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ABSTRACT

Part 1 details the developmental steps that led to the creation of
a two-dimensional hydrodynamic model capable of predicting water levels
and current velocities within an area of arbitrary size, shape, and
boundary nature (open or closed); and capable of predicting also the
location of closed boundary segments as a function of time.

Restrictions on the applicability of the model are:

1) There must be negligible variation of horizontal veloclity over

moat of the depth of the fluid layer

2) There must be negligible vertical velocity

3) There must be negligible vertical shear owing to horizomtal

velocity gradients

4) There must be negligible pressure and buoyancy forces arising

from any small varifations in salinity.

In Part 2, the feasibility of computing the tidal flow through a
small area of marsh (roughly 1,000 x 600 sq.ft.) using equations and
solution techniques described in Part 1, 1s demonstrated. The model
allows for the inundation of and withdrawal of water from arbitrary
areas of the marsh, and is quite general in regard to the size, shape,

and open or closed nature of the boundaries.
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Part 1
Development of a Two-Dimensional Hydrodynamic Numerical Model
for Use in a Shallow, Well=-Mixed Estuary






The coast of Louisiana is characterized by several shallow estuarine
systems, of which Barataria Bay is one of the largest. In the brackish
regions of these systems, the parts not always under water consist of
mud flats covered with marsh grass. Between the mud flats water depth
will not usually exceed ten feet and is most cften less than five feet,
The elevation of a mud flat above mean tide level is about six inches.

At low water at certain times of the year, mud flats may be exposed; at
high water they are submerged. Offshore, in the Gulf of Mexico, the
astronomical tide has a range of about one foot; and it is this small
tidal range combined with the exceedingly flat nature of the terrain
over many square miles that has made possible the vast extent of the
brackish marsh.

Going inland from the Gulf, one finds water becoming less and less
brackish, until finally it is fresh, The possibility exists, however,
for the freshwater regions to be inundated with salt water as the result
of storms blowing from the south. In this case, large areas of fresh
marsh normally beyond the tidal reach and barely covered with water may
suddenly be submerged to depths exceeding a foot.

Conslderable interest exists in studying this transient storm-induced
phenomenon from the point of view of its reaction upon the aquatic eco-
system, Hence a large-scale hydrodynamic medel of an estuarine system
such as Barataria Bay is indicated. Interest also exists in the ecology
of the brackish mud flats that are intermittently covered with water;
and here again a hydrodynawmic model of the water exchange would be useful,
For both of these models--the large and the small scale--a variable
boundary feature is essential. The solid boundary must be allowed to

3



vary its position with time, In the following sections, the developmental
steps leading to the creation of such a model or "solution strategy' are
given,

Not included in this report 1s a description of the dispersive
feature governing the concentration of suspended nutrients, which is
important to bilological studies. However, diffusive-dispersive effects

may be combined with the basic hydrodynamical framework described here.

1. Equations

The two-dimensional vertically averaged equations governing a homo-
geneous hydrodynamic system in which Coriolis forces and wind stresses
are present may be written (Hansen 1956, Leendertse 1967):

§£+ﬂ+m=o

8
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3, ;30 , o 3 _ 3g 4120 BAUSYT  Tx
at"'Uax"'Vay fV+gax+p3x+g 2 oH 0 (1.1)
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where the symbols have the following meanings:
' -- water level above a given horizontal reference plane

H == depth of water above the bottom (=h + 7, where h is the depth of
the bottom below the reference plane)

U,V —— vertically averaged x- and y- components respectively, of the
horizontal velocity component

f == Coriolis parameter (=2  sin ¢, where Q is the earth's angular
velocity and ¢ is the latitude)

g =-- acceleration due to gravity (negative in the z-direction)

€ -- Chezy function used to calculate the bottom stress. According to

the Manning formula:
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where n is the Manning roughness coefficient

X,
1; -- Xx- and y- components respectively of the wind or surface stress
Po —- atmospheric pressure at the surface

Implicit in equations 1.1 are the approximatlions of constant hori-
zontal veloclty from top to bottom of the fluid layer, negligible vertical
velocity, negligible vertical shear because of horizontal velocity gradients,
and constant density. Indications of the accuracy with which these require-
ments are met can be obtained in either of two ways:

1) Direct sampling of the currents and densities within the system

ii) Computation of a model using equations 1.1 and comparison of
results with observed data.

The second method is complicated by the fact that n, the Manning
coefficient, is not known a priori; but a little experimentation with dif-
ferent values of n should indicate the appropriateness of the major
agsumptions.

In some cases there may be significant horizontal density gradients
in the water owing to the presence of dissolved salts (salinity). These
will create an additional forcing effect in the horizontal direction.

The terms to be added to the equations of motion are

4 g
[ * .E ..a.P_ dz' L] - - _B_ B_P dz>
U-equation: <<:; _/.ax V-equation: o 3y
Z

4
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A discussion of these additional force terms and of the simplifying
assumptions described above, may be found in Pritchard (1971). In what
follows, it will be assumed that the medium is sufficiently homogeneous

that equations 1.1 are adequate to compute the motion.

2. Cholce of a Finite Difference Scheme

Equations 1.1 must be expressed in finite difference form for the
purpose of achieving a numerical solution.

The so-called "implicit" method of solution is used, since this has
been shown, in the case of linear equations, to be unconditionally stable.
A possible finite difference scheme for the implicit solution of the two-
dimensional hydrodynamic equations was given by Leendertse (1970). The
equation of continuity and the U-equation of motion in Leendertse's scheme

can be written as follows:

n+l/2 n —n n+l/2 -n n+l/2
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In these equations a superscript (") denotes 2-point averaging, and a
superscript (*) denotes 4-point averaging of a given variable.

The equation for‘%% is analogous to the last above for %% except
that all times are increased by At/2. It need not be given here. The

grid scheme utilized in writing Equations 2.1 is shown in Figure 1,

The separation of [ and h iIn space resulta in the following

expressions for the averages Hu1+1/2,j and Cui+l/2,j centered on Ui+1/2,j:
n n
ui+1/2,j 2 l2
n n

Eu = Ci’j M Ci+1,j

Ti41/2,3 2
where

=n _1.486 |1

Rather than separate the points of h and ¢ location it is more con-
venient mathematically to have both of these quantities refer to the same

position in space. Then Hi j is given by the simple additiom:
>

Big T 0a,3 % %9

There are also two physical reasons for keeping h centralized with respect
to the velocities, which will be described. Consequently, a grid scheme

was adopted identical to one that has been used by several authors in the
past for the explicit solution of the two-dimensional hydrodynamic equations.
This is shown in Figure 2. According to the scheme of Figure 2, ﬁgi+l,j
must be given by
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Consequently, a pair of h's and a pair of r's are involved in the defini-
tion of HYU as with Leendertse's scheme, the only difference being that
the paired h's 1lie at right angles. However, the expression for ¢t 1s

much simpler than Leendertse's above. We have for the point i+l,j

=a 1,3 7 “441,9 _ 1.486

1/6
i+l,j 2 n [(hi,j * ;i,j)

/
+ (hi+1,j + Ci+1,j) : 6]

Only two h's are involved in defining Ch instead of six in Leendertse's
expression. The effect of the latter is to smooth out undulations in the
bottom contour that have a width comparable to Ax. This might be con-
sidered advantageous in cases where the mean slope of the bottom (over

many grid squares) determines the currents, and the small scale undulations
are essentially accounted for in the Manning roughness coefficient n; but
in cases where undulations constitute important anomalies in the general
'contour, then clearly the weighting provided by remotely located h's is

not conducive to accuracy. Consider a sinusoidal terrain running across
the grid squares In the x- direction, of wavelength X N Ax. Clearly, if

and h lie in the "next valley" they will have

hy1/2, 34172 1-1/2, j-1/2

no relevance to the estimate of h at U which is what is required

i+1/2, j
to evaluate C there. The scheme of Figure 2, which utilizes h's no further
than Ax apart, must provide a better estimate of h at the locations between
two adjacent h observations.

In the TLouisiana estuarine systems there are many areas where the
bottom isscoured by relatively deep channels on the order of tens of
yards across., These are important conduits of the water flow. The width
scale of such a submerged gulley is much less than any practicable grid

spacing., Consequently, it is not desirable to smooth out this type of
P g y

irregularity in calculating C.
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Fig. 3. Stepped bottom topography showing flooding.
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But there is a second and more important reason for adopting a
finite difference scheme where ¢ and h occur together in the center of
a square. Whenever a canal or bayou occurs whose width is typically less
than the grid interval, one must represent such a feature by a whole grid
square, adjusting the constant depth h (across Ax, say) so that the flooded
cross sectional area remains the same. Then all other factors being equal,
the volume flux will be the same. Now, were the h's to be given only at
the corners of a grid square, then the bayou depth would be totally
unrepresented. The model in fact would "'see" no bayou! For this reason,
a colncident h and ¢ are important. In the case of Barataria Bay, we have
a main tidal pass whose width, about one mile, precludes any representa-
tion by multiple grid squares. And s¢ here, a central depth h must be
given.

A further simplification of Leendertse’s finite difference scheme
was adopted. Whereas Leendertse used a three-layer scheme in time--n-1/2,
n, n+l/2--it seemed desirable to reduce the layers to two: n, n+1.l A
considerable saving in computer storage results therefrom;2 and we obtain
moreover, 8 simplification toward greater realism in the handling of a
moving shoreline or boundary. To appreclate the latter point, consider
Figure 3(a) and (b), which shows respectively, a grid "square" in vertical
section just before flooding and just after flooding, from the adjacent
square.

The calculation of the new level ;:ti* after the time step At between

the times n and n+l, proceeds as though there were a solid boundary exten-

sion AB at the edge i. In actual fact spill-over, or flooding, of square i

lln his earlier models (1967) solved with an alternating Implicit-
Explicit method, Leendertse used a two-layer scheme.

2See p. 28.
11



will have occurred during At, and so we must estimate a new level C2+1

in square i based on some hydraulic formula. Next, we must deduct the
volume of water transferred Intc i from the water initially calculated
for square 1i-1, yielding a corrected level zzji in square i-1. The boundary
for further computations, i.e., for the next time step, has now been moved
to the edge 1i+i.

The displacement of time levels requires that the new time n for the

next step correspond to time level n+l for the old step. And the new n-1

n
i-1

but what of ;g? It is undefined since no water existed in square i at the

will correspond to the old level mn. In square i-1 we have ¢ defined,

0ld time n. This is the difficulty created by a three-layer solution
scheme in time. The two-layer acheme avoids this impasse since cz»l for
the new time step is not required. The only levels needed to advance the
computations are those shown in Figure 3(b). If by some expedient we
avoid hiaving to use c:—l in a square that became flooded at time level n,
we must still incur the disadvantage of having to keep in memory the con—
dition of every square, wet or dry, at time level n-1. This is so that
the necessity of transfer to a modified equation of motion (one that does
not use Cg—l) at time level n may be established. In a two-layer scheme,
only the current condition of a square is recorded in memory, with conse~
quent saving of computer storage.

At this stage of the analysis, the question remains whether the two-
layer time scheme will be as numerically satisfactory as the three-layer
scheme. To decide this question, one-dimensional models of estuarine-type
geometry were computed using both schemes.

The one-dimensional three-layer system of equations utilizing the

grid scheme of Figure 2 and corresponding in averaging symmetry to the

system 2.1 is
12



-1 n+l =n n+l
( Uggp U Bu U )

n+l n
& -z -
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At Ax

e e ey (e ). @
At 2h% * ax 3 7 +

(2.2)
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where the surface stress term has been dropped for convenience.

The one-~dimensional two-layer system is
Ui Y T HYG Y

Cn+1 _ Cn
LE;FEE__E) + Ax =0

- o) o) [ ) - e )

et % A% ) 7 + (2.3)

o (o) 1/R (@)1 - o

2

(-n n+l =n n+1)

Systems 2.2 and 2.3 were applied to a rectangular basin of constant
bottom level, open at one end (i = 1) and closed at the other (i = L). A
sinusoidal tide was applied at the open end. The disposition of variables
to be computed is as shown in Figure 4.

1 and UL are the two known and necessary boundary variables, while

Uz, Tos U3, Gy oor Up_gs %1 have to be determined as functions of time.

A description of the implicit method 1s given in Appendix 1. Here it
suffices to say that systems 2.2 and 2.3 lead to a system of 2L~4 algebraic

equations for the 2L=4 unknowns. The quantity Ul, which occurs in the

finite difference expression for the derivative %% at 1 = 2, 1is outside
the computation field, and this means that a modification must be made to

either the equation of motion or the finite difference form of the

13
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Fig. 4. Unknown and boundary variables in one-dimensional model.
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derivative. Leendertse (1967) has reported that the replacement of a
centrally symmetric spatial derivative at the boundary with a one-gided
derivative that utilizes interior points may cause local numerical
instability. He advises, consequently, that the derivative be dropped
from the equation when one of its datum points is not available. The
linearization should not introduce appreciable error in most physical
cases, Hence, the equation of motion was partially linearized at the
first computation point in the one-dimensional test models.

Length parameters were selected for comperability with the Barataria

Bay estuarine system. They were:

L =21
Ax = 1 mile
h=5 ft.

A Manning coefficient of 0.026 (following Hacker, Pike, and Wilkins 1973),
tidal amplitude 0.4 ft., tidal period 12 hours, and time step 5 minutes
were used. The tidal constants do not correspond to those of the Leulsiana
coast (where typically the amplitude is about 1 foot and the period 20
hours), but the shorter period reduces the computation time required for
a given number of cycles,

It should be noted that the time step of 300 seconds closely approxi-
mates the Friedrich/Lewy/Courant limit At g As//EEE;;;3 for stability of
an explicit scheme of solution. In the present model As/v2gh N 295 sec.
It may also be noted that the choice L = 21 for the number of grid lines

insures that A/Ax ~ 100, where }» is the wavelength of osc:l.llation.4 Sobey

3The symbol "As" is used to represent a generalized grid interval:
either #x, for the one-dimensional model, or the lesser of Ax and Ay in a
two—dimensional model.

4For a linear system of equations, solved in conjunction with a sinu-
soidal forcing function of pericd T, the wavelength of oscillation is given
by A»=T/gh. Hence, with T = 12 hours and h = 5 ft, X 100 miles.

15



(1970) has shown that Leendertse's Implicit-Explicit method of solving the
two-dimensional linearized equations results in negligible phase distor-
tion of the solution for A/Ax ~ 50 when At = 1,25 4s8/Ygh. Since the
present one=-dimensional model is wholly implicit, and At < As//EH, one
would expect the phase distortion to be even less. Amplitude distortion
is zero for Leendertse's solution scheme.

With the above inputs both finite difference models behaved satis=~
facteorily in computation, and negligible differences were observed in the
results for z(x,t) and U(x,t)., Table 1, p. 13, gives a few of thesge
results, and also some results for another finite difference scheme to
be discussed.

Although it was shown that schemes 2.2 and 2.3 yield virtually indis-
tinguishable results, some doubt remains as to how closely these results
approximate the true soclution. In other words, are systems 2.2 and 2.3
the optimum schemes to use? To resolve this question empirically, it
would be necessary to test a variety of numerical schemes and compare the
results in each case with the analytical solution for the open-closed
boundary initial value problem. But no such analytical solution is avail-

able, owing to the presence of the nonlinear terms

JHU sm_gi
ax HC *

not to mention the advective acceleration U%g. If %gg is linearized by

replacing H with h (assuming r<<H) and U%% is dropped, we are still left

with the nonlinear bottom friction term gU|U|/hCz, which is an essential
physical feature, It was therefore decided to investigate the numerical
behavior of a rather different physical situation that does have a simple

exact solution.
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A level-bottomed frictionless rectangular basin, closed at both ends,
was considered, Any disturbance in this basin at time t = 0 will lead to
a sustained oscillation with the natural or resonance period of the basin,
The equations governing the phenomenon for small amplitude disturbances

are:

Qi
=]

14 -

3¢ Tz = 0 2.4
30, 3r _

ac T 85x ~ O

Let I be the length and h the constant bottom-depth of the basin, A the
ogclllation amplitude and w the angular frequency. Then 2.4 with the

boundary conditions U = 0 at x = 0, 1 has the solution:

Acos (E%) cog (wt)

A¢§ sin (E%) sin (mt)

¥t
n

o
It

where
“ =1y

The values 1 = 20 miles, h = 5 ft, and A = (0.4 ft were chosen so as to
render some comparison possible between the doubly closed and singly
closed models. With these parameters, the natural period of oscilation
turns out to be
T =20 « 4.64 hours

At time zero, a constant slcpe of the water surface was assumed,
equivalent to a straight line approximation of the function Acos (Ix/L),
with values { = A and £ = -A at x = 0 and x = L respectively, in order
to silmulate the artificial starting condition of a nonlinear model. With
this initial situation, nine distinct finite difference schemes involving
the implicit method were computed, and the corresponding numerical

17



solutions for the water height at a fixed point (near the end of the basin)
were plotted at hourly intervals. Also plotted on the same diagram was

the exact solution, This empirical approach was adopted as being more
economical in time and effort than the analytical method pursued by
Leendertse (1967) and Sobey (1970). Time and space steps were as for

the open—-closed model already described.

Only one of the numerical solutions became unstable, but six of the
others showed marked damping. It was easy to rank these solutions in
order of agreement with the exact sinusoidal function over the 9 hours
plotted. The finite difference scheme yielding the best results (in
which the fractional error deviation at times of maximum and minimum

water level during the first cycle did not exceed 10 percent) was as

follows:
n+l n-1 ] n+l n=-1 n+1 n-1
F -5 )+_h (U1+1+U1+1)_ g™ + v )]= o
2AL Ax
ntl n-l) ( ntl n-l) nt+l n—i)
0" S AT _(51-1 TR, s
7IX: AX 3 2 .

The second best solution corresponded to the two-layer scheme of equations

2.3, namely

n+l _n n+l n+1
(Ci 'Ci) +h(Ui+1 - Uy ) - o
At Ax

o) G[ET e Eedd).

At Ax 2 2 (2.6)

The linearized version of Leendertse's equations 2,2 ranked third, but

was close in accuracy to 2.6.
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It 1s noteworthy that the two-layer scheme corresponding to 2.5

n+l n ( nt+l n ) ( n+l n)
- <) , _h [Ui+l P U PO
At Ax 2 2
nt+l n n+l n n+l n 1)
i - ) . B [Ci + ) ) (R ]= 0
it Bx 2 2

gave the worst results, showing instability after 3 hours, Clearly, It
is better to make use of the next-preceding solution point in time (n-1)
as the known value with which to calculate the subsequent point {(n+l),
rather than to use the preceding point (n). This is in the context of
the doubly closed frictionless basin., One would hope, however, that the
introduction of friction and of a forecing function at an open boundary
would render the distinction between the solutions obtained with the
three-layer and two-layer schemes less marked; and indeed this has proven
to be the case with schemes 2.2 and 2.3 applied to the one-~dimensional
open~closed basin discussed.

A third difference scheme was computed for the singly open basin with

symmetrical terms corresponding to the linearized equations 2.5:

(Cr;-kl _ Crix-l)-i- ) [ﬁn (Un+l + Un-l) ﬁgi (Un+l + ‘Un—l)] )

B R T A R S 1 1
2At Ax 2 2
(2.7
ntl _ n—l) n+l n-1 ( n _ .0 n+l n-1
0™ - o} +(Ui + 157 (g - V) . _5[(51 + o) )
24t 2 2Ax% Ax 2
ntl n-1 ntl n-1
(Fimy * ‘;1-1)]+ F™ + 1ol @ ()2 - o
2 8 2 = S

The solution showed a smaller amplitude of oscillation at points within
the basin than with scheme 2.3, and a phase lag of about 30 minutes rela-
tive to the solution for that scheme. Such phase lags had been predicted
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by Leendertse (1967) in his comparative studies of wave deformation using
various linear schemes. Some results for comparison with those of scheme
2.3 are given in Table 1.

We see, in conclusion, that the chosen scheme 2.3 for the open-closed
basin, has a counterpart €.6 for the doubly closed basin that ranks high
among those schemes tested. Moreover, the Introduction of bottom friction
and a foreing function appears to render the numerical sclutions less
sensitive to the type of differencing used. Hence, even if there were
no regular correspondence between the results obtained for two different
physical situations using equivalent difference schemes, we may feel safe
in selecting the two-layer scheme 2.3 as the basis for a real-world

computational model.

3. The Two-Dimensional Test Model

Leendertse (1967}, in his various hydrodynamic models, used an
Alternating Directions Implicit-Explicit method to solve his equations.
The solution strategy is as follows:

i) The equation of continuity and the U-equation of motion are

solved together implicitly at time level n to yield values

of Cn+1/2 and Un+1/2 along each row,
n+l/2
ii) The V-equation of motion is solved explicitly for V along
each column. We now have Cn+1/2, Un+1/2, Vn+l/2 everywhere

in the field.
iii) The equation cof continuity and the V-equation of motion are
solved together implicitly at time level n+l/2 to yield values

of £n+1 and Vn+l along each column.

iy} The U-equation of motion is solved explicitly for Un+1 along
P
each row. We now have Cn+l, Un+1, Vn+1 everywhere in the field,
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TABLE 1. Some computed values of water level
for the one-dimensiona. open-closed basin
using finite difference schemes 2.2, 2.3, 2.7.

Hour £ (10, Hour)

Scheme Scheme Schenme

(2.2) {(2.3) 2.7)

35 -0.02 ~0.03 -0.01
36 0.09 0.09 0.05
37 0.19 0.19 0.12
38 0.24 0.24 0.18
39 0.22 0,22 0.18
40 0.14 0.14 0.11
41 0.06 0.06 0.06
42 =0.05 -0.04 0.00
43 -0.14 ~0.14 -0.07
44 -0.20 -0.20 -0.13
45 -0.20 -0.20 -0.16
46 -0.10 -0.10 -0.09
47 -0.02 -0.03 -0.01
48 0.09 0.09 0.05
49 0.19 0.19 0.12
50 0.24 0.24 .18
51 0.22 0.22 0.19
52 0.14 0.14 0.11
53 0.06 0.06 0.05
54 -03.05 -0.05 0.00
55 -0.14 -0.14 -0.07
56 -0.20 =0.20 -0.13
57 -0.20 -0.20 -0.16
58 -0.10 -0.10 -0.09
59 -0.02 -0.03 -0.01
60 0.09 0.09 0.05

Note: The observation point is 9 miles from
the open boundary.
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The whole procedure is repeated for the next pair of half-time

steps, and so0 on.

The two-dimensional equations adopted for the author's model, which

follow in form those of Leendertse (1970), with the restriction to two

time layers, are:

.ntl o =n n+1 _gn n+l (-n n _=n
oy Ci,j)+ (g 4 Ui,y T MYy Ui,j)+ B4 Va4~ Wy VI:;JJ)B .
At Ax Ay
(Un+1 _® ) Un+1 (Un - ) vl (Un - )
c1, i i, \Vi+l,j 1-1,3/, 1,3V 1,3+ 1,3-Y_ ¢ ya® 4
At 2Ax 27y i,j
o+l n ) (n+1 n ) (Un+1 n )[(n )2 ( n )2 1/7
+ + +U U +(v*
g [(‘1,3 “1,9) Cim1,9 R jl g 1 T et/ (Ve 1,9
Ax 2 2 2
2
=1 =T} 1 3Po s =N
Hui,j (Cui,j) +‘E Pl Tx//;Hui,j = 0
n+2 nt+l =n+1 n+1 =n+1 nt+l =n+1 n+?2 =n+1 n+2
(51,3 21 j) (Hui+l,j Yir1,3 ~ MYy Ui,j)+(H"1,j+1 Vigga By V1.1)= 0
At Ax Ay
n+2 n+l) nt+l ( n+l n+l ) n+2 ( n+l n+l )
VITE Ly e (v - v +V v -y
(1,3 1,1/, 1,3 \d+l,d "~ i-1,j 9 V¥l ~ 74,321 bl
At 24% 78y 1,3
n+2 n+1) 2 n+l ( n+2 | okl ( n+l) 271 /2
+ 7 + VIl 4y U
g (Ci,j 1,1/ (‘1,3 ci,j-l) 4 g i 1,1)[ 1,3
Ay 2 2 2
=n+l (—n+1 )2 1 B&Po s / =n+1
i C += &9 i =0 3.1
1, V1,3 oy 'y /P1,3 G.1
together with the explicit equations (Leendertse 1967):
otl *n+1( _ g ) o+l ( n n )
Vi - v, _)+ U Vina,s = Yie1,9), Vi, Vagm " Yi,540) o™
At 2Ax ZAY sj



o+l n ) (n+l n ) n+1 ( Y ~n+1)
. + . . *
_ﬂ_[(cisj + cis:'_ - cisj_l ’:1’3_1]+ g visJ [U i,] sj visj

Po s =n+1
+=— - Hv = 0
0y T/"1,3
n+2 n+1) nt2 ( n+l _ ol ) fF2 ( ntl ont+l ) 402
6511 1,1/, Y1.3 Yirr,3 " Yie1,9) T3 Usga = Yi4a) e 1,3 .
At 2Ax 24y

n+2 0+l n+2 n+l n+2 n+1f (IH2¥ | ¥oent2 —ort2
e gt ‘i,j)_(ci-l,j * 50, v g L [(Ui,j + by ]l%“i,j (¢} j)

Ax 2 2

1 3P0 s ¥2
+ S ox - //pHui j 0 (3.2)

The quantities with superscript ( ) and (*) are defined as follows:

1/6 1/6
- _ _ _ 0,/ +u/
Rug o= Hy b H Cu, = 1.i86 ( 1,3 2 1 l,j)
2
1/6 1/6
_ ) _ ) g% wY
Hvi,j Hi,j : Hi,j-l Cvi,j 1.286 ( 1,3 > 1,j 1)
Ve =+ (y +V +V, 4V
1,4 7% Vi-1,341 7 Va,940 7 V5,1 T Viq1,9
= 1
Ui, © 3 (Ui,j tUsi,9 T Ur,9-2 7 Ui,j—l)

The Alternating Directions Implicit-Explicit procedure was tested by
applying a sinusoidal tidal function to a square basin of constant bottom
depth, open at one side. Parameters of the model (calculated without

atmospheric forcing) were:

Grid dimensions 21 X 21 Tidal amplitude = 0.4 ft.

Ax = 5280 ft. Tidal period = 12 h 4 -1
Ay = 5280 ft. Coriolis parameter f = 0.712 X 10 rad sec

h =5 ft. Manning coefficient = 0.026
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Initially, a 5-minute time step was used., It was then found that with
both V-explicit and U-explicit intermediate steps, the model developed

an increasingly strong oscillation of f-values in the y-direction, of
wavelength 2Ay, after 5 hours of tidal time, leading to negative depths
after 9 hours. With U-explicit only, the model showed an increasing
ogcillation in the x-direction of wavelength 2Ax after 17 hours; but with
no explicit steps at all, the computation proceeded satisfactorily for
the full 24-hour test period.

The presence of numerical instability with either or both of the
explicit inctermediate gteps is to be expected from the fact that At
slightly exceeds the Friedrich/Lewy/Courant limit As/figﬂgax R 295 sec;
and the reason that the V-explicit step introduces a much stronger insta-
bility than the U-explicit step is of course because the physical situa-
tion is essentially one-dimensional in the y-direction. Along this
direction the principal driving force operates. The U-component of
velocity is much weaker than the V-component and only exists in the
present case as a consequence of the Coriolis terms. There is, therefore,
almost no change of 7 in the x-direction, at least under conditions such
that the results do not contain spurious oscillations.

The experiment was made of calculating the model implieitly at three
other time steps: 10 minutes, 2 minutes, and 1 minute. When the method
1s wholly implicit, one substitutes for the explicit steps by letting V
at- time level n+l equal V at the preceding time level n, and U at time

level n+2 equal U at time level n+1.5

5
Although this procedure is also "explicit," the term"explicit step"
will be understood to refer only to the case that the hydrodynamic equations

are utilized, and without such step or steps, the method will be considered
purely implicit,
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The results for At = 10 minutes showed a strong spurious oscillation
of £ in the y-direction after 3 hours of tidal time. The results for
At = 2 minutes agreed very closely with those for At = 5 minutes; and the
results with At = 1 minute were likewise almost identical to those for

At = 2 minutes. Clearly, solutioun convergence has been obtained at

At

It

2 minutes.

The model was also calculated with both explicit steps included for
the time steps 2 minutes and 1 minute. Results were virtually identical
in both cases. It is therefore meaningful to compare the time histories
of £ at a single point In the field as obtained with the implicit method
on the one hand, and with the implicit-explicit method on the other, for
the common time step of 2 minutes. Figure 5(a) shows the curves plotted
for 40 hours of tidal time at the point (10,20). This is near the closed
boundary, where the phase difference and amplitude difference between the
curves for the two solution methods i1s greatest. It can be seen that the
phase advance of the Implicit-Explicit method, relative to the other, is
variable with time (probably owing to the distorting influence of the
starting conditions £ = U = V = ( everywhere) and can be as much as one
hour. At a point halfway between the open and closed boundaries, the
phase differences are slightly reduced and the magnitudes of the maxima
and minima of { agree closely {(see Figure 5[b]).

As a final experiment, the same two-dimensional problem was recal—
culated using Leendertse's 1970 approach (see also Leendertse and Gritton
[1971]). The one-dimensional equations abstracted from the two-dimensional
equations have already been given (2.1); it is therefore only necessary
to say that in the second half-time step (n+l/2At to (n+l)At, the variables

o+l vn+-1

4 and are implicitly calculated. Translated to integer time

levels, and using the grid scheme of Figure 2, the full equations are:
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Fig. S. Comparison of solutions in the two-dimensional model
usging the Implicit/Explicit and Implicit methods.
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ntl n ) - n+l = +1 =1 n a0 v
(‘1,3 “1,3/, (H“1+1,j Uyig,; ~ WYy g Uy j)+ (H"i,j+1 Vi g4~ By g j) .
At Ax Ay
n+l n-1 n+l n-1 n-1 " n-1 n-1
(Ui,j - Ui,j)+ Yy (_U:L+1,j Ui—l,j)+ Vi3 (_Ui,j+1 - Ui,j—l) ; *n
—E vt 4+
I 28% 28y
n+l n-l) (n+1 n-1 ) (n+1 =1 n-1 1/
_E[(ci,j Py By oy Wit ) (Ui,j)
Ax 2 2 2
2
=N =Tl
Hui,j (Cui,j) 0 (3.3)
n+2 okl —n+1 n+l =n+1 n+1) —n+1 n+2 _ ol n+2
Ly - Ci,j)+ (B501 5 Vien,g ~ By U4 . (H"1,3+1 Viggra T W4 Yy ) o
AT X by
nt2 _ .n ) 401 (n gt ) n+2 (n 1)
(_Vi,j V1,0, "3 Vin,s " Vae1,9) Vig Vi ” Y- e U*n+l
2At 2Ax% 20y

£ [(ctiﬁg Z c;.l,j) (Cril+§ 1 ’2’ S 1)] ‘g (Vgtzj : Vtilgj) [(U’ir.l;l)zJ’ (Vg,j)z]l/iy

The solution strategy 1s as follows:

i) Solve the equation of continuity and the U-equation of motion

together implicitly at time level n to yield values of cn+1 and

Un+1 along each row.

Required in the calculation are anl, Un-l, Cn, and Vn.

ii) Solve the equation of continuity and the V-equation of motion

together implicitly at time level n+l to yield values of §n+2

and Vn+2 along each column.

Required in the calculation are A Cn+l, Un+1.
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Repeat this procedure for the next pair of time steps, and so on. Thus,
while £ is found at every time level, the U and V components of velocity
are only solved for at alternate time levels with respect to each other.
In the above acheme, Vn+1 is missing; likewise UIH'2

If both components of velocity are required contemporaneously, then
one component--say, t"--must be found either by solving the appropriate
equation of motion explicitly, or by interpclating between values at

adjacent time levels.

Whether Un is found from the formula

Un-l + Un+1
Un - i,] 1,3
i,j 2 4

or derived by explicit solution of the U-equation of motion at time level
n-1/2, storage must be reserved in the computer for the following
veloclity arrays:
Un-1’ Un’ vn, Um+l’ vn-+2

since Vn+2 cannot be stored in V" (as would be desirable) on account of
the cross—derivative 3V/3x in the V-equation of motion, which requires
V" in the preceding column.

The velocity storage requirement for the Implicit-Explicit scheme

represented by equations 3.1 and 3.2 is

+
Un’ Vn’ Un+l’ Vn 1

since here, Vn+2 can be stored in v,

Hence Leendertse's solution strategy requires one more velocity
storage array. The same implicit equations, however, involve Cn-l, and
therefore require an additional Z-array also. This disadvantage of larger

storage requirement has already been mentioned in Section 2.
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The Leendertse Implicit model was computed at time steps equal to
10 minutes, 5 minutes, 2 minutes, and 1 minute. Almost identical
results were obtained for all of these time steps. The r~values also
showed close agreement with those of the Implicit-Explicit Model.

Table 2 displays results from each of the three solution models
at 21 hours tidal time, for each stable case computed. It can be seen
that for any given model the effect of varying time step is manifest
mostly in the part of the field furthest from the open boundary at j = 1.
Furthermore, it would appear that for both the Implicit-Explicit model
and the Leendertse Implicit model, solution covergence has been essen-
tially obtained at it =.120 sec,

For a computer run time of fifteen minutes and 4t = 60 sec, the
Implicit~Explicit model yielded hourly output up to 22 hours of tidal
time. For the same computer run time and the same At, the Leendertse
Implicit model (wherein U® wae calculated from the mean of Un+1 and
Un-l) yielded hourly output up to 25 hours of tidal time. There is thus
a slight time advantage, at a given At, in using the latter model, if
one is content to interpolate for one velocity component. However, the
time advantage becomes very great if the user 1s satisfied with less
accuracy; for then a larger time step can be employed—-and one larger,
it would seem, than the maximum time step permissible to the Implicit
model, equations 3.1.

Using Leendertse's implicit method, one retains, however, the dis-
advantages of larger computer storage requirements and unnatural treat-
ment of the moving shoreline, as discussed in Section 2. A further point
to be considered is that in cases of very small spatial interval As

(<100 ft), where At must necessarily be of the order of a few seconds,
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TABLE 2. The cquare basin problem calculated with three solution
methods at 21,0 hours tidal time paramcters as on p, &, (10,j) ft.

Imp-Exp Model
S— Ioplicir Model Eqa, (3,101 Eqs.(3.1) & (3.2 leendertge Toplicit Model 1970 |
3 300 120 60 120 60 600 300 120 €0
20 0.09 0.10 0.10 0.03 0.03 0.02 0.02 0.03 0.03
19 0.0% 0.10 0.10 0.03 0.03 0.02 0.02 0,03 0.03
18 0.09 0.10 0.10 0.03 0.03 0.02 0.02 0.03 0.03
17 0.10 0,10 0.11 0.03 0.03 0.02 0,02 0.02 0.03
16 0.10 0.10 0.11 0.02 0.02 0.01 0.02 0.02 0,02
15 0.09 0.10 0.10 0.02 0.02 ¢.01 0,02 0.02 0.02
14 0.09 0.09 0.10 0.01 6.01 0.00 0.01 0.01 0.01
13 0.07 0.08 0.08 0.00 0.00 -0.01 0.00 @.00 0.00
12 0.06 0.06 0.07 -0.01 | -0.01 -0.02 -0.01 -0.01 -0.01
11 0,04 0.04 0.05 -0.02 -0.02 -0.03 | -0.02 -0.02 -0.02
10 0.01 0.02 0.02 -0.04 -0.04 -0.04 ~0.04 -0.04 -0,04
9 -0.01 [ -0,01 | -0.01 ||-0.06 | -0.06 |[[-0.06 | -0.06 | -0.06 | -0.06
8 -0.05 | -0.04 | -0.04 ||-0.08 | -0.08 ||-0.09 | -0.08 | -0.08 | -0.08
7 =0.09 -0.08 | -0,08 ||-0.11 | -0.11 |[-0.11 | -0.11 | -0.11 | -0.11
6 -0,13 | -0.13 | 0,12 -0.15 | -0.14 J|-0.15 | -0.15 | -0.15 | -0.15
5 -0.17 | -0.17 | -0.17 || -0.18 | -0.18 |[|-0.19 | -0.19 | -0.19 -0.19
4 -0,22 { -0.22 | -0.22 ||-0.23 | -0.23 ||-0.23 | -6.23 | -0.23 | -0.23
3 -0.28 | -0.28 | -0.28 (|-0.28 | -0.28 |[-0.28 | -0.28 | -0.28 | -0.28
2 -0.3 | -0.3¢ | -0.34% |[-0.3% [ -0.34 |l-0.34 | -0.3% | -0.3% | -0.34
1 -0.40 | -0.40 { -0.40 || -0.40 | -0,40 {}-0.40 | -0.40 | =0.40 | -0.40




a tidal model could probably be computed with sufficient accuracy using
the simple implicit scheme embodied in equations 3.1; for when At <<
tidal period, the phase and amplitude distortion introduced by equating

v Gith v, and U2 with UMD, pust be negligible.

4, Conservation of Mass

The finite difference equations 3.1 adopted for the two-dimensional
model must be shown to conserve mass in the sense that the only mass
changes occurring within the boundaries are those arising from the flow
of mass across the open boundaries.

Consider the equation of continulty in two dimensions:

3, BHU . BHV

et Tty - °

If we perform a double integration on each term from x = 0 to x = 1,

and vy = 0 to v = k, we obtain

WU VA T VAT
ST - ()] o5 of fi), - ()]

The term on the left-hand side is the rate of increase of volume within
the area lk. The first term on the right-hand side is the net flux of
volume through sides k of the area lk, and the second term on the same
side is the net flux of volume through sides 1 of the area lk. Hence
the sum on the right-hand side is simply the rate of increase of volume
within the area lk which is equal to the quantity on the left.

In the context of our finite difference form of the equation of con-
tinuity, we must replace the continuous integration with a discrete summa-
tion, taking the limits i = »L and j = 13K,
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It 1s therefore required to prove that

Lk (Fn+l B Cn ) X L ( n Un+1 _ Un+1)
sEs S VL T, L 5N s \Lg i 1,3 1,3
141 At Y 1 " Ax

=11 '[1 =Tl
5L 5K ( Vi g4l Vi, 441 T Yy s vlil,j)
1“1 Ay

dvAx = O

The first term above can be written

n,n+l
z zl BSLI sy
and this is clearly the mean rate of increase of volume within the area
defined by the limits (1,L) and (1,K) between time levels n and n+l.
Let the second term be expanded in the first subscript, keeping the

second subscript (j) constant. We obtain

4 - ntl =1 n+l =n n+l =T n+1
% [(““2 Uz,5 ~ B4y ”1,3) * (““3,1 Us,yg ~Hiy 4 U 3) te
gt n+l _ K 5 gt o+l
(““Lj Lj SRR i j)] by 3 ( by g U,y ¥ S UL,J') 8y

Similarly, the third term of the equation expanded in the second subscript

keeping the first subscript (i) constant, yields

L n
2 (‘H"i 1 Vi 1t H"i K Vi,K) ax

The equationr can now be written

81 ~ K —n ! K _p n+1)
1 3 hxby = (‘1 Hiy 4 Upy - BB U gy

Axhy +



The first expression in parentheses on the right-hand side is simply the
mean net volume flux into the basin in the x-direction between time levels
n and nt+l. The second expression in parentheses on the right hand side is
the net volume flux into the basin in the y-direction at time level n. If
we discount the difference in time levels, then the sum of the two parenthe-
sized terms 1s the total net volume flux into the basin at a given time
instant, which equals the instantaneous rate of increase of volume within
the basin. Since the left-hand term covers a time interval At, and the
right-hand expressgsion embraces the same time interval, we can say that on
average the finite difference equations conserve mass. An increasing
error will result as the time step is enlarged. But then, the equations
generally become poor approximations of the true relationships when At is
excessive.

There is a further consideration of mass conservation that arises on
account of the possible variation of the boundary configuration. The effect
to be described does not seem to have been noted in the literature.

It is evident that whenever a negative water depth is obtained after
solving the equations implicitly along a row or column, then the square in
which the negative depth occurs must drop out of the computation field,
and a new boundary or set of boundaries is established. This is the
reverse of the flooding of dry squares: one or more wet squares becomes
dry. The question arises of what to do with the negative depth. It can
be shown that conservation of mass requires that this negative depth be
held in memory and added to the new positive depth temporarily established
when the dry square is flooded again (or, alternatively, the negative
depth may be added into the wet field depths in some distributive manner,

but this is more difficult). It may happen that the sum so obtained is
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stil]l negative, in which case this sum must be added to the next temporary
positive depth established when the square i1s flooded again, and so on
until a total positive depth is obtained.

The necessity for keeping a running account of negative depths and
adding them into the wet field may be shown in the following manner. Con-
gsider a rectangular tank (Figure 6) having a single-stepped bottom and a
drain in the deepest corner. TFor convenience of calculation the tank has
unit bottom area in each region, so that depths and volumes are numerically
equal.

Figure 6(a) shows the initial state with depths of water Hy and H2
in the two depth regions of the tank, Figure 6(b) shows the final state
after a volume of water AV has been removed by opening the drain. The new

depth established on the left is H,', and the right region is now dry.

1
Clearly, the model simulates tidal ebbing from a flooded area of land.
The ebbing preocess can be broken down conceptually into an unstable
intermediate state shown in Figure 6(c), and then into a redistribution
of the water H2 such that the level in the higher bottom region is below

the bottom surface, thus giving rise to a negative depth (Fig. 6[d}). Let

" and H,." where H," < 0.

the new theoretical depths established be Hl 2 2

Clearly, conservation of voclume gives

HZ = [Hl" - (Hl-AV)] + HZ" (1)

Physically, all the water H, should have gone into the left region, so

2

that the corrected level here is

' - —
Hl H2 + Hl AV (i1}
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Eliminating H, from (1) and (ii) we obtain

2

L - n n
Hl Hl + H2

Thus, to conserve water, we must add the negative solution in the newly
dry area to the solution in the adjacent wet area. Without the correction
HZ" in the present example, the volume in the left-hand region will be too
large.

For the tidal model it is more convenient to make the correction to
the same square that developed the negative water depth, performing the
addition when that square becomes flooded again. There is of course no
rationale for choosing any particular wet square to be corrected; nor do
we know how to distribute the correction among all the wet squares in a
row or column.

A departure in the present work from Leendertse's published method
{Leendertse and Gritton 1971) should be mentioned. Whenever there has
been an adjustment of boundary In a row or columm, the values of I in
that row or column are not recalculated at the same time level. Rather,

a new time step is considered for every application of the implicit
solution. In Leendertse's procedure, the adjusted row or columm is
re-solved at the same time step. It seems doubtful whether this doubling
of computational effort is worth the possible increage cof accuracy.
Moreover, there is no reason why a row or columm should be sclved with

the new boundary rather than the original boundary, at the time step in

which the new boundary is established.

5. Computation of the Moving Shoreline

The advance of the wet boundary by flooding over dry steps in the
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Fig. 6. Stepped Bottom Tank. (a) Full; (b) With Volume AV Removed;
(c) and (d) Conceptual Intermediate States.
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Fig. 7. (a) Topographical upstep: (b) topographical dovnstep.
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topography is treated as a weir phenomenon,6 for which a hydraulic formula

exists. This 1s (cf. Glles [1962]):
Q= mWyz ' {5.1)

where Q is the volume flow per second per unit width of the weir of height
W. The empirical constant m depends on the actual weir. In the Francis
formula, of which 5.1 is the limiting case when V2/2g<<W, where V ig the
velocity of approach to the weir, m has the value 3.33 ft 1/2/sec.

Since it is proposed to determine the new shoreline, not after every
time step, but after every pair of time steps, when the field equations
have been applied along both rows and columns, the general problem may be
stated thus: To determine the volume transferred in a time interval 2At
across one edge of a dry grid square. Two physical situations must be
distinguished: the "upstep" and the "downstep.' These are illustrated
in Figures 7(a) and 7(b) respectively. The vertical section is arbitrarily
taken perpendicular to the y direction, and the flooding is assumed to
occur in the x direction.

Consider firstly the topographical upstep. At time nAt, the level in
square i-1 is C;-l' I1f there were an infinite barrier at edge 1, the
final level in square i-1 after time 2At would be ggti*. But owing to
the spillover into dry square i, the final and maximum level reached in
i-1 will be cgfi < ;:ti*. Corresponding to the level ggti, there is a
maximum weir height WM. The minimum weir height is plainly zero. Suppose
the weir height begins to increase from zero at time {nt+2f)At, where
0<f<l. At the time instant {(nt+2f)At, the water level in square i-1 will

equal the bottom level in square i. Making use of 5.1, the volume trans-

ferred across edge 1 in time 2At must be given by

6See also Reld and Bodine (1968) for this assumption.
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(n+2) At

Voli = mhy W3/2

(n+2f) AL

dt (5.2}
Let us assume that W increases at a rate proportional to t' = t-{n+2f)At.
Then we may write

W =oat' and WM = a{l-f)2At (5.3)

Hence, from 5.2 and 5.3 and the definition of t'

(n+2) At (1-f)2At
Vol, = mhy 02 g1 32 g mA}f 312 g1 32 4o
(n+2£) At 0
= %'mﬂy a3/2 [(l—f)2&t]5/2
or,
=4 3/2
Voli =3 ndy (1-f) Wﬁ At
The new depth in square i is given by
HT‘Z = Vol,/Axhy (5.4)
i
Hence from 5.4 and the last egquation,
3/2
Hn+2 ] i.m (1-£f) WM At
i 5 Ax

Now the average value of the function 1-f, assuming that all £'s are
equally likely, is 1/2. Thus on average we obtain

3/2
Hn+2 _ 0.4 m Wﬁ At 5.5)
i Ax ’

It is to be noted that formula 5.5 can only be successfully applied to an

upstep when

n+2
Hi << WM (5.6)

If this condition is not met, then some interference of the weir flow
will occur on account of the water built up in square i. In order to

ensure condition 5.6, there will be an effective upper limit to the

permissible mapgnitude of At for given Ax.
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To conserve mass, the volume of water transferred to a dry square
must be subtracted from the wet field. For convenience of computation,

n+2

however, it was decided to deduct the flood volume Hi AxAy from the

adjacent flooding square only. Hence we obtain

n+2 - n+2*_ Hn+2
bi-1 % %41 T %1 2

and (referring to Figure 7[al])

o2
Wﬂ = A - Hi .

The largest possible value of WM is equal to A when H?+2 = 0.

A specilal case arises if the corrected level ;gti in square i-1
should be less than the new flood level ;?+2 in square 1. Physically,
this is an unrealizable situation. What must happen, according to the

previous assumption of volume transfer from square i-l only, is that in

the case of the upstep, a common level will be reached in both squares,

and so
n+2 _ 1
Hi =3 A 5.7
Thus a test should be made for the truth of the imequality g?ﬁi-<;2+2, and

when this occurs, a revised depth is calculated by 5.7. However, At should
be so chosen as to render this special case infrequent or absent altogether.

Where common levels are reached in both squares, it is clear that

1
WM-2A¢

Hence the range of WM is from %ﬁ to A. We assume on average that

- 3
Wy =% & (5.8)
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Consider now the downstep situation. This will obtain when flooding
occurs over a levee, as diagrammed in Figure 7(b). The process is more
complicated than with the upstep, for here two flood stages occur almost
simultaneously. During 2At water will appear on top of the levee, and
during the same time interval it will cascade down onto the next and lower
step.

Assume that the welr height W above the levee (square i-l1 in Figure
7(b]) increases steadily from time {n+2f)At when W = 0, to time (n+2)At
when W = ¥ .. Making the assumption as before that the water in square i

M

comes only from i-1, we have

_ n+2
WM = A - Hi
and the largest possible value of Wﬁ is equal to A when H2+2 = 0.

The test g?tf < c?+2 should be applied, and also a check to see if
the corrected level ;gti is below the land surface in square i=l1. If
elther of these tests prove positive, then formula 5.7 can be used; so
that in this case WM = %‘A- It is assumed that on average for the down-
step, equation 5.8 also holds.

Substituting Wh from 5.8 in equation 5.5, we obtain

n+2 - 0.26 mA3/2 At

Hi Ax

(5.9)

The use of equation 5.8 for WM in the downstep situation is admittedly
somewhat artificial. We justify.it merely on the grounds that (1) the
levee gituation should be infrequent compared with the upstep situation
and (2) an error in the volume transferred should be eventually removed

by successive application of the equation of continuity to the new wet

fleld., The last remark applies also, of course, to any error in the

calculated volume for an upstep.
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It is to be noted that 5.9 can only be successfully applied to a

downstep when

n+2 42
Gi—l Zg + hi << A (5.10)

To ensure condition 5.10, there will be an effective upper limit to the
permissible magnitude of At for given Ax.

Since every grid square i not touching a boundary has four grid
squares adjacent to it, flooding can conceivably occur from more than one
of these squares at once. We handle this possibility by calculating the
flooding from two or more perpendicular directions separately and then
adding the separate contributions in square 1. Thus a running total

n+2' n+2

1-1i must be kept, composed of the sum of the individual Hi g8 contributed

by the adjacent flooding squares already considered.

nt2'

Define a quantity 61

as the amount by which the interim level in
i exceeds the land surface in the next square whose flooding contribution

is to be considered. Clearly, if for this square

o2

8y

<< A,

then we may safely apply formula 5.9. It was decided to adopt am arbitrary

criterion

n+2 '
8y $ Fa, 0<F <1 (5.11)

for calculating a successive flooding contribution. If condition 5.11
with some assigned value of Fc ig not met, then the level in the flooded
square currently reached by the addition of the previous flooding contribu-

tions is taken as the final level. Again, suitable choice of At for
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glven Ax and Ay should render this premature halt unlikely. But if it
occurs, when we may expect the insufficiency in the new water level (in
square i, j)} to be gradually eliminated over the next few time steps for
the reason given earlier: namely, the successive application of the
equation of continuity to the new wet field.

Plainly, the accuracy of the flooding procedure can be improved by
reducing At, approprlately. There must be a trade-off between the desired
accuracy in this area (within the limits of formula 5.9) and the computer
running time of the model. The topographical sensitivity should enable
the modeler to choose wisely here.

The flooding procedure is applied where necessary in a chain manner.
It may happen that a newly flooded square is capable of flooding the next
square, and so on. Since all these operations are carried out for one
and the same time step, there will be an increasing error in the estimated
magnitude of the flooding as one moves down the chain., Only experience
with a2 given model and time step can tell if this cumulative error is
important. If it should seem that the chain is too long amd that it
occurs im a crucial area, then one may have to restrict the flooding to
one or two squares at a time before applying the field equations again,

or alternatively, reduce At.
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APPENDIX A
Principles of the Implicit Method

Referring to equations 3.1, we write the first pair in the form

n+l -n A_t) n+l (_-n E) ntl _ o (—n n _
Y4t (H“1+1,j ax/ Cirl,d TOVEY g /U5 T %, T \BVe L4 Vi,
=1 n At
Hv v ) -—

i, 1i,] Ay

o+l n n ) At At ( n )2
- At 4 g AL +
Uisj {1 * (Ui"rl,j u:{.-l,j ax B2 [Ui,j

e /s o)) < (00) b+ ()

1, Y1, \"%1,3 28x/ %1,3 2ax/ t1-1,3
S S | (Un _.n )i_'_f& *n_g&(rn_n )_
Ui, V5,5 Y541 7 U4,5-1) 2ay VI3 T 2ax \h1,5 T Bi-1,y
gAt 0 (Un )2 + (v*“ )2 1/2 T (Eﬁ )2 -1 3P0 s g
27 1,5 (V1,3 1,3 i, \"i,] o ax  'x/ PUi,3
Let
a = f8 At
i+1,] i+l,j Ax
¥ = . Th At
21,3 HYy .5 Bx
n -n n =11 n At
= - |H — a2>
AL 24,3 ( Vi, Vi,54 T B Vi,j) Ay
b = gt
1,] 2Ax
t
' - -
bi—l,j 2AX
. 2 2 yé 2
.t - n i )ﬁt+ggt (n) +(*n) 50 (—n )
®1,1 1+ (Ui+1.j Ui-1,1/20x ¥ 72 | V1,3 - i3 \%y 5
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o 0 _ oyl (n _yf )_f_\i *n_gég_(n_n )
84,3 Ui,s = ¥,3 Up,5a0,9-1) 2ay To* B8C Y5 - 5 Ba,57%4m1,3

_ Eit n (n 2 n)“/?-—n o )hi& s / =n
2 Ui,j[Ui,j) + (vi,j Huy g (C“i,j b ax T Tx /Yy

The multiplier Fl (=0 or 1) 1is introduced into the expression for Bi j in
¥

order to take cognizance of the fact that the derivative (U" Y
i,3+1 i,j-1

20y may be unavailable for computation. In this case we set Fl = 0, Other-

wise F1 = 1. 1In the case that j = 1, we omit the derivative altogether,

as the U-array must properly begin with subscripts 1, 1 in FORTRAN language.
The conditions requiring Fl to be zero are:
a) Proximity of dry land or an open boundary, rendering either
Ui,j+1 or Ui,j-l undefined

b) The case j = K-1 in which U lies outside the computation field.

i,K
(Here K 1s the maximum value of j.)
ntl n+1

Thus the equations to be solved for € and U are
_ 1, i,}
ntl, nt+l n+l
4 + a. ., U . al )} = A
i,3 i+1,j "4i+l,j i, 1,3 i,]
{A.1)
+1 nt+l n+1
A O N R N = B
i’j isj i,j 1'1:3 i"'l:j iaj

Suppose that the boundaries in the jth row occur at i=I and i=L.

The boundary situations to be considered are:

i=1 i=1L Reference
Open Closed UOPEN1
Closed Open UOPEN2
Open Open UOPEN3
Closed Closed UCLOSE
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The system of equations A.l may be written

the subgceript j for convenience:

y ntl
by o1

. ntl
341 Ut

ntl

]
b I+1

I+1 °

n+1l

]
arys U

where

L onHl
+ bl U

n+1

t i

B! Un+l

+ by Ui

n+l
T ot

" n+l
* by U

n+l

tooa toa U

+

Un+l

8741 "I+l

n+l
+b T+1

+1 ©

Un+1

+ I+2

8142

n+1

+ by B

Un+l

+ T+3

21+3

n+l
th1 R

n+l

N = 2(L-1)-1

in expanded form, dropping

Al (1)

Bre1 (1

Al (111)

Blyo (iv) (A.2)
A142 (v)

B, (N-1)

Ay (N)

For each of the cases in Table 3, we must select a subset of equations

from system A,2 as detailed in Table 4,

It is to be noted that U¥+1 = U:+l are usually zero when they are given
quantities.
Reference Given Quantities Equatione Used No. of Equations (M)
UOPEN1 S i (11) - ) 2(L-1)-2
UOPEN2 v, gt (1) - (8-1) 2(L-1)-2
UOPEN3 it ;Eji (i1) - (8-1) 2(L-I)-3
UCLOSE LA (1) - (1) 2(L-1)=2

I
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-+
Let us pursue the case C?

If the term b! ¢

n+l
I°IL

1

+
system A,2, and the term ar UE t

and U:+l given.

is transferred to the right-hand side of (ii) in

1s transferred to the right-hand side of

(N) in the same system of equations, the matrix equation becomes

Tt
b1 P
a' 1

[}
© b
Q o]
4] o
Q Q
Q [a)

L

There are M = 2 (L-I)-2 rows to

I+2

bl!, b

I+2 1+2

¥
8142 143

'b'lt

I+2 143

I+3

corresponding to the M unknowns U

a solution can be found,

o+l
I+1°

n+l
I+1

n+l
Ua

n+l
I+1

mtl
b1l

n+l
I+2

whl
b142

n+l
I+3

n+l
U-1

n+l

-1

n+l
Cr-1°

_ g Il
br &g

BI+1
I+1
I+2

I+2

I+3

BL—l

n+1
Aai7gL U

the tridiagonal coefficient matrix above,

Consequently,

For each of the four boundary cases it is possible to write an

algorithm that will yield the unknowns along the row.
will yield the unknowns along a columm.
computation field is first implicitly solved aiong rows to yield ¢

and Un+l and then along columns to yield ;n+2 2
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Certain specilal cases must now be considered where the general solu-
tion algorithm is imapplicable., These are illustrated bhelow with

the reference names over each.

I'I+41 "I+l

UOPEN1 UOPENZ2 UOPENS3 UCLOSE
-1 1 / / Z 1 A -1 1 A %/ 1 /
% 7 %, A
| 1+1 L 1 +1 L | 1+ +2 L | L.
Open Boundary Square
Interior Wet Field Square
Dry Square
UOPENL
The equations for this case are
PP T 3 n+l  _ _ oyl
braVier T Praatia Bre1 ~ B1%g
al Un+l + cn+l = A
I+l I+1 I+1 I+1
These have the solution:
' _ oLy
O (_BI+1 bilr ) = Pii1 A
I+1 1 _ntt
b14121417 P14
: _ 4 0l
S Apgbrey = (Breg = b3 57 )
- P11
I+l b1 P
UOPEN2Z
The equations for this case are
n+l n+l
51 a5 A
. 0+l ve ol _ n+l
b1ty * bhUa Brr1 7 Prartrel
These have the solution:
_ n+l ot
S P (Brya = Prabra) ~ Prit
I bla_ _-b!!



UQPEN3

The equations for thiz case are

' _ _ n+l
oL brar = (B - Prygfra)
+1 , .
Prir1 ~ Pra
1 Ol n+l - ol
bV ¥ Prafa Bre1 = Pr¥p
' o+l n+l ntl
a741%41 ¢t ST T LISV Arn
' n+l . | - _ ntl
brerfrer ¥ Pre2Vi2 B2~ Pt
These have the solution:
1ot RIS . o A ve - n+l
o b1is® e (Brar 151 ) PiaaP it tPiif e BraoPrastren)
I+l 1y ' T ' Te
briz (1P bry) * AraPraPra
" _ptt ! n+1 e _ _ n+l
o _ reoPinbi) Brar I ) *Prabiiobr 2P 11 B Praatiso)
I+l T 1 Rt ' 1y
biiy @' a1 PH1) * 2ra2PiaPii
' 1 ' Rt - ntly ' _yr 0l
PR S o O 11 P1a1) (BreoPrao®Ten) 2 1eaPraa (Bra 1%y )
I+2 e ' 1Y ' T
biio (1e1Pre1PHi1) + AraoP1arPria
UCLOSE
n+l
Here, a single equation determines the unknowm ;I :
n+l
51 Ar

Similar cases to the four above may, of course, occur along columns.
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APPENDIX B

Use of a Stretched Coordinate System

Suppose that for reasons of field resolution the coordinate lines

i=1, 2, 3 ... are not equispaced but observe a functional relationship

with the distance x from the origin. That is

1= I(x)

Similarly, if the j coordinate lines are also stretched by a functional

relationship with the distance y from the origin, we have

j=J3y

The chain rule of differentiation requires that

) g 8L, 9 3 3J,

ax 9L 9x 8y  aJ dy
For the finite difference representation of the derivatives, these

operator relationships translate to

where A 1s the difference operator.

Since AT = AT = 1, it will be convenient to replace AL and AJ by

As (=1). Then equations 3.1 with stretched coordinates can be written

in an obvious shorthand:

+1 . .
e, - ‘:lj)+ ( ) Lisisz,g +( ) Ii,34172
At As As
@ﬁfl - U?,.) ot ( ) 1] Vit ( ) I1 5yt
e g B R
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4s 2
n =N 2 1 3P0 s 0 _
Hui’ (Cui,j) + > ox 'rx/pHui’j = 0
n+2 n+l = -
r — \ N Il' T
iy =5, )+( ) L4172, N ( ) Tigm/2 _
At As As
nt2 n+l n+l n+2 ' n+l
- % M J f U%
(Vizj Vi,j)+ U ) 1.3 +Vi,j ( )71, 3 R & BN
At 2As 2As
_ < n+2 n+l 1/2
_5[( Jg,3 =1 )1,3-1] i,3-1/2 Vi, * Vi,j)[ ] /
As & 2
=ntl /[=m 2 1 3Po s =n+1
Hv, . C . + - = {
V1,3 ( vi,J) b3y 'y //;Hvi,j

The contents of the parentheses where blank are the same as the contents

of the corresponding parentheses in equations 3.1. The symbol 1!

i+1/2,j
means the average value of‘%% between the points (1,j) and (i+l,3).
Thus
' .+ 1!
Tt = i,] i+1,41
i+1/2,] 2

Similarly with the other averaged derivatives.
The averaging involved in calculating ﬁu, ﬁv, Cu, Ev, V%, and U* is
now a little more complicated. Let X(i) and Y(j) be the distances from

the origin to the ith and jth coordinate lines respectively.

i1, @ T

i ¥ i+
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It 1s evident that

- dy d
s = o ) + s o)
Let
d
1
P (i) =
X d1+d2
Then
X, =X
P (1) = ;l__%_;é__
i+l Ti-1
and
Hui,j = Hi,j Px(i) + Hi—l,J (I-Px(i)) i=2 ,..L-1
If we define
P (§) = ATl
v Yi417Yy-1
we obtain similarly
Hvisj - Hi,j Py(3) + Hi,j—l (1~Py(j)) j=2 ... K-1

The averages Cu and Cv are defined as follows

- _1.486 1/6 1/6 .
Cui,j = - [Hi,j Px(i) + Hiﬂl,j (l - Px(l))]
- 1.486 1/6 . 1/6 .
Cvi,j = ~ [Hi,j Py(j) + Hi,jul (l - Py(J))]

The above four averages are subject of courge to the provigo that
all quantities H are defined where necessary.

It may be easily showm that with the above definitions of Px(i)

and Py(j)
vigos % [(Vi’jﬂfi’j_‘_l)Px(i) + (vi——l,j+vi—l,j+l) (1 - Px(i))]
1 4 .
"5 7 2 [(Ui,jwiﬂ,j) Fy(3) + (Ui,j—l+Ui+l,j—1)(1 - PY(J))J

subject again to the proviso that all quantities V or U required on the right

hand sides are defined.
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Part 2
A Hydrodynamic Numerical Model of Tidal Flow Through A
Small Area of Brackish Marsh



Plate 1. Aerial view of marsh study area,
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A segment of Louisiana brackish marsh in the neighborhood of Air-
plane Lake was selected in October 1974 as a test case for demonstrating
the feasibility of modeling the movement of water over such a terrain.

An aerial view of the marsh 1s shown as Plate 1, The salient fea-
tures are a broad channel in the south! of the picture and two tributary
channels rumning nerthward that form three open boundaries of the area
to be modeled. The northern boundary of this area (henceforward to be
known as the Model Area) 1s mixed in nature, being open for part of the
way from west tc east and temporarily closed and open for the rest of
its length, depending on the state of the tide,.

Such a piece of marsh was selected because it has the advantages of
being nearly enclosed by open boundaries, and it is a size convenient
for surveying in a matter of hours. A mixed boundary is far more diffi-
cult to handle computationally than one that is always open. The mixed
boundary is alsec complicated to handle from the observational viewpoint,
for an installed tide guage will only function intermittently.

The channels shown in Plate 1 lie essentially on the margin of
Barataria Bay and about 7 km from the Gulf of Mexico.

In character the marsh consists of soft mud covered with Spartina
grass about 2-3 ft in height. It may or may not be left "dry" at low
water; but 1t is certainly flooded at high water. Thus at high water
the Model Area becomes a shallow lake with open boundaries all around.
Only the grass projecting above the water surface still delineates the
shape and extent of the land underneath.

For computational purposes it is necessary to superimpose a grid on

lCompass directions are relative to the orientation of the paper
only.
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the Model Area, whose rectangular border substitutes for the real con-
figuration of the land. Figure 1 shows the grid selected, the interval
being 51.28 ft. Grid lines number from 1 to 25 in the west-east direc-
tion, and from 1 to 13 in the south-north direction. A greater density
of grid lines than this is of course possible, but high resolution of the
Model Area was not justified in the present case, owing to the sparsity
of the topographical data.

The solid circles in Figure 1 indicate points whose elevation was
measured by theodolite relative to the Base ‘Point A situated in the lower
left-hand corner of the Model Area. It can be appreclated from the
scarcity of measured points that there are large areas of intervening
land whose elevation is a matter of guesswork. Although one can safely
predict that any inferred elevation between two widely separated datum
points will neot be in error by more than 0.5 feet, owing to the near-flat
nature of the Louisiana salt marshes, yet small differences in elevation
of the order of an inch or two may be important in determining the dis-
tribution of waters over the Model Area during the period between low and
mean tide levels. However, the present study is less concerned with
predictive accuracy than with demonstrating the feasibility of a mathe-
matical technique, Consequently, the half-measured/half-guessed charac-
ter of the topographical input is not considered damaging for the present
purpose.

Elevations were obtained for the centers of all the grid squares in
the Model Area by linear interpolation between the measured points.

These are given in Table 1.2 For the open boundary squares {(indicated by

2Tab1es begin on p. 97.
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open circles in Fig. 1) it was necessary to estimate a typilcal depth of
the bettom of the channels below the mean water level during the period
of measurement., Here again, observational thoroughness wae neglected in
the interest of convenience. A constant channel depth of 1.5 ft., was
assumed. It 1is now necessary‘to relate the measured elevations (or
essentially the Base Point) to the mean tide level on the day for which
computations are to be carried out.

Figure 2 shows the tide gauge record for 15 October 1974, obtained
at a station some hundreds of yards from the Model Area. This station is
a permanent installation; and whereas in a predictive study an in situ
tide guage would be desirable (if possible several), in the present case
the remote reading was judged sufficient.

The curve shows two maxima and one minimum yielding two values for
the tidal range on 15 October, namely 0.63 and 0.54 feet. Likewilse two
"half-period" magnitudes are obtained, which are 10.5 and 10.0 hours.
The following tidal constants were selected for the model

Amplitude = 0.3 ft.
Period = 20.0 hrs.

Thus the tide was idealized to a pure sinusoid with the above parameters.
Now, at 1000 hours on 15 October it was estimated that the land
surface at the Base Point lay approximately 0.2 ft. below the water sur-
face at the Base Point. Consequently, the land surface at the Base Point
should be drawm at YBP = 14.44 ft. in Figure 2. The mean tide level

(YMT) was estimated from the formula

e [0 70) 4 (2 Y]

where Y,, Y_, Y_  are the ordinates of points A, B, and C in Figure 2.

A’ "B* C

One could of course have used some other formula, such as finding the
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first moment of the figure, considered as am area, about the time axis.
But such elaboration is not necessary here.
With the above formula for YMT we find that YMT = 14.91 ft. Hence,

the correction to be made to the measured elevations to relate them to

mean tide level is

cC= YMT - YBP = 0,47 ft.

Let us adopt the convention that depths below the mean tide level are
positive, and '"depths" above it are negative. The symbol h is used to
represent the topographical depth relative to mean tide level. Let E
stand for the topographical elevation relative to the Base Point. Then
clearly,

h = =(E=C) 1)
Egquation 1 shows the manmer in which the corrections are to be made.

A glance at Figure 2 reveals that the Base Point will always be
covered by water since the tidal minimum occurs 0.18 ft. above it.
inspection of Table 1 shows, moreover, that the whole Model Area will
always be under water since the maximum elevation relative to the Base
Point is only 0.04 ft. It appears then that a day of exceptionally high
mean tide level had been chosen to make the measurements. From the point
of view of modeling, such a high mean tide level is not advantageous.

The decision was made therefore to reposition the mean tide level rela-
tive to the marsh. It was desired that at mean tide at least some of the

marsh should be above water. The new correction increment chosen was

C = -Oaz ft-
Applying this correction to the elevations in Table 1 in the manner

of equation 1, and correcting also the open boundary depths, we derive an
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h-table (Table 2); and from this table it is possible to derive what is
here called a "symbolic depth matrix." The latter matrix contains as
elements the numbers -1, 1, 0, and 2, each element corresponding to a
grid square. The assignment of element values proceeds on the following
basis:

-— open boundary square

—— square under water, not open boundary

dry square
-- square outside computation field

N o ) S
|
i

Thus if, at the start of the model we assume that the water level is
constant everywhere that water exists and equal to the mean tide level,
and that all topographical depressions below the mean tide level contain
water, then we obtain the symbolic depth matrix shown in Table 2.
Clearly, there is a wet zone in the northeast of the Model Area and
ancother smaller cne in the midsouth. These starting conditions will
provide a more interesting and technically significant model history as
the tide goes through its cycles than will a direct application of the

curve in Figure 1.

1. Equations and Solution Method
The two-dimensional, vertically averaged equations governing a
homogenecus hydrodynamic system in which Coriolis forces and wind stresses

are present may be written (Hansen 1956; Leendertse 1967):

¢ L o HU L O HV -
5t T 8x | ay 0
(2)

83U Bl L y3U o, B3Z u/u24v2 1§ -0
5t Cox 'y Eax T 8T e oH

e i1 B
3V, 3V _ 3V 8 % VYU24v2 1x =0
f UtV t U esT s e oh
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where the symbols have the following meanings:

4 —— water level above a given horizontal reference plane
(in this case mean tide level)

H ~- depth of water above the bottom (= h + £, where h is
as defined earlier)

U,v -- vertically averaged x- and y- components respectively,
on the horizontal velocity component
f -- Coriolis parameter (= 2 I sin¢, where @ is the earth's

angular velocity, and ¢ is the latitude. For 29°18' N,
the mean latitude of Barataria Bay, f = 0.712 X 10-4

rad/sec)
g -- acceleration due to gravity
c ~- function used to compute the bottom stress. According
to the Chezy-Manning formula:
c - L.486n1/6

n

where n is a constant that has the approximate value
0.026 for estuarine bottoms (Hacker, Pike, and Wilkins
1973)

T;,TB -=- X and y components respectively of the wind or surface
y stress.

Implicit in the derivation of equations 2 are the following assumptions:

1) There is negligible variation of the horizontal velocity
component from top to bottom of the fluid layer.

2} The vertical velocity component is negligible.

3) There is negligible vertical shear due to horizontal velocity
gradients,

4) There are neglibible pressure and buoyancy effects due to
small variations in the density.

Assumptions 1 and 3 remain to be validated by computational experience
with the model, backed by observations of water level in different
Places as z function of time.

Assumptions 2 and 4 are expected to be valid for well mixed estuar-
ine waters flowing over mud flats.

Equations 2 must be expressed in finite difference form for the
purpose of achieving a numerical solution. In Part 1 some numerical

experiments together with other considerations led to the choice of the
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following finite difference equations as appropriate "implicit" approxi-

mations to 2:

n+l _n =1 1l =n mHl =Tl n =n n
L + -iE U ) +(H v T
(;i,J Ci,j) ( uiy],j 1t+l,] ut i:j) ( Vi, §+1 1,3+ Vi i’j)
=0
At Ax Ay
n+l n ntl n n n n n
U, ,-U +U U - + V* - - n
( i i,j) 1,9 (Ye1,57%1,5) i,j(”i,jﬂ Ui,g-1) - Iyt
At 24x 2Ay
ntl, n nt+l n +1 (3a)
4 - n n Tl 2
g [(Ci,j 1,)- 1,y ci-l,j)] Te (U1,3+U1,1') [(Ui.j) *
15’3 2 Z2 2
(v*n )2 ljj/’ﬁn (En )2"18 pﬁn -0
i3 Ui, 3\ Vi, g X/ Ui,
n+2 ntl at+lfyntl oo+l n+2 (ool ontl w1
(Vi = Vig)* U*i,j("m,j Vicg) Vi Voo - Vigey) * IO ¢
At 2Ax 2Ay

[ - e ] - o e
Ay 2 2
(V2+;)2]1/i//’ﬁ3+1 (En+1 )2 - Ts//fpﬁn+l o
’ 1,3 Vi,j v Vi, ]
The superscript n denotes time level t. Thus t = nAt.

Equations 3a are similar in form teo the implicit equations of
Leendertse (Leendertse and Gritton 1971), with the exception that only
two layers in time are considered (n, n+l) instead of three (n-1, n,
ntl). The restriction of two layers did not, in the case of a two-
dimensional test model with bottom friction and forcing function, lead
to results that were gignificantly different from those obtained with a
three-layer scheme. Consequently, the two-layer scheme seemed to show a
better relationship of computer storage requirement to solution accuracy
than the other. But more important, the elimination of the lower time

level allows a more natural treatment of the moving boundary problem. A
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grid square that was dry at time level n~1 (but is now wet at time level
n) poses a difficulty in that ;n_1 for that square is not defined. The
grid scheme corresponding to equations 3a is shown in Figure 3.

In Leendertse's initial work (1967) an Alternating Directions
Implicit-Explicit method of solution was employed. It would be advan-
tages however, in terms of computational effort, if the two explicit
steps could be avolded.

Part 1 showed that the phase and amplitude distortion introduced
into a tidal solution of period 12 hours by omission of the twe explicit
steps, can be expected to be small if At is 1es? than 2 minutes and also
less than the Friedrich/Lewy/Courant limit As/r755hmax, for stability of
an explicit technique.

In the present model As (= Ax = Ay) = 51.28 ft., hmax = 1,3 ft.,

and so
Y 2gh = 5.6 secs.
max

With a time step of order 5 seconds and a tidal period equal to 20
hours, it is highly likely that the difference between the solutions
obtained with a pure implicit method and a mixed implicit-explicit
method, will be negligible. Accordingly, it was decided to begin the
computations using the following strategy:

1) Solve the equation of continuity and the U-equation of motion
together implicitly along rows at time level n to yield ro-1
and Untl all over the wet computation fileld.

2) Equate VOl gith V0 for all wet squares.

3) Solve the equation of continuity and the V-equation of motion

iether implicitly along celumns at time level ntl to yield
and VotZ 211 over the wet computation field.
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4) Equate T2 yith U™ for all wet squares,
This procedure is repeated for each succeeding pair of time steps.
Steps 2 and 4 replace the explicit steps of Leendertse's method.
In terms of the present grid scheme, the relevant "explicit" equations

are:

ntl _.n % nt+l n _ g n+1 n _ oyl
(Vi3 - Ve * YT (e - Viens) * Vi3 (V8,341 7 V4 501) *
At 2Ax 2hy (3b)
mtl n+l n n+l 1l n-1
fU* + + - * 2
W [(';i,d “1,3) ~ (5.1 * 5L 1)] t 83 [(” )t
oy e ;
v o2l V2 n+1 —n+1 ‘ —n+1
7 )2 - fomm -0
sj Vi j vj_’j ¥ j
n+2 n+l o2 n+l o+l n+2 n+1 n+1
("m -5 ) Y ULy (Vien,y m Viie,y) * O3 e V5 5e1)
At 24x 2hy
n+2 w2 n+l +2 n+l n+2 n+1
£V¥ + + - (= )2
1,] 8 [(ci,j by J) (Ci—l,j teia J)] el g [(Ui,j +
Ax 2 2
L2Y2 | 170 / =ort2 En+2 2 _ .8 ﬁn+2 =0
(V i,j) ] /// Hui’j( ui,j) /P ui,

Although 2 and 4 above are still explicit in form, no use is made of
the hydrodynamic equations to calculate VOl and Ut2; consequently,
the method will be regarded as purely implicit, and the term "explicit
step' reserved for the case that the hydrodynamic equations are utilized.
For detalls of the implicit method itself, reference can be made to

Part 1. Here it suffices to say that two boundary conditions are re-
quired, one at each end of a row or column of the grid. The four possible
combinations are:

i} Open-Closed

i1i) Closed-Open

11i) Open-Open
iv) Closed-Clesed

65



vl,j+1

f i
Ay Sy huy l
u,; ¢ o Ui, j
¥ o
th
- A
Fig. 3. Grid scheme used to achieve a
solution of Equations 2.
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(a)

(a) Topographical upstep and (b) topographical downstep.

Fig. 4.
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In the case of an open boundary, ¢ is given; in the case of 2 closed
boundary U or V iz given depending on whether the vector of unknowns
lies along a row or column respectively. When U or V is given they

have the value zero.

2. The Moving Boundary Problem

Here we come to a part of the solution technique that assumes a
specilal importance for the class of problem dealt with in this study,
that 1s, flow over small scale, highly irregular topographical fields
whose features_may become alternately wet and dry. A full discussion
of the method by which the extension of the boundary closed by the
rising water level was calculated is given in Part 1. A summary of the
salient features 1s presented here.

The new wet boundary is determined after every successive pair of
time steps. Figure 4(a) and (b} show the two topographical situations
that can arise, referred to as the "upstep” and "dowmstep" situations.
Vertical grid sections in the x-z plane are shown by way of example,

In the upstep situation, water from “square" i-1 floods onto the
higher square i. In the downstep situation, the water from square i-2
first floods over an upstep i-1 and then onto a lower square i, Hence,
Figure 4{b) corresponds to a levee situation. The condition for flood-
ing in both cases is that c;ti*, which is the computed level in square
i-1 prior to allowing any movement of the closed boundary from i to itl,
exceeds the level of the dry land surface in square 1.

The volume of water transferred in both cases is estimated from a
hydraulic formula developed by engineers to calculate weir flows (cf.
Giles 1962), Tt states that

Q=mi’2 (4)
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where Q 1is the volume flow per second per unit width of weir, W is the
weir height, and m is an empirical constant. In the Francls formula, of
which 4 is the limiting case when VZ/Zg << W, where V is the velocity of
approach to the weir, m has the value 3.33 ftllesec; and this is the
value adopted for the present study.

From averaging considerations, the volume traﬁsferred in time 2At

from square i-1 to square 1 was estimated in Part 1 to be

3/,
Voli =0.,26 m A At Ay

%

where A 18 the excess of ggti over the land surface in square i for the
*

upstep, or the excess of ;gti over the land surface in square i-]1 for

the downstep, and Ay is the dimension of a grid "square' in the y-

direction. Since the "squares" have area Ax Ay, the depth of water

established in square 1 must be

nt2  0.26 m A3/2 At
Hy e (5)

To conserve mass, the volume of water transferred to a dry square
must be subtracted from the wet field. It is convenient to make this
+2
correction to the adjacent, transferring, wet square. Let C:—l be the

new depth after correction, in square i-1, Then it follows that

2 a2k o2
Bge1 ™ 541 T Hy

Now it may happen that the following condition is fulfilled:

n+2 n+2
Bi1 < %y (6)

Clearly, this is not physically realizable. As an alternative to this
condition holding, we distribute the water between i and i-1 so that

Hn+2 -

i A (N

(X[=



In the case of the upstep, equation 7 means that

ot2 _ nt2
Ci_l = Ci ]

i.e., equal levels are established. Iﬁ the case of the downstep, equa-
tion 7 is somewhat artificial, But choice of a suitably small value of
At should make occurrence of the physically imaginary condition discussed
here sufficiently rare as to maintain good solution accuracy.

Very often flooding can occur from more than one direction at once.
In the context of the finite difference grid we have to consider the
possibility of flooding of dry square i from each of the squares (i-1,3),
(i+1,3), (1,j-1) and (i,j+1). Thus at the same time step At we must test
for flooding of square i from each of the four directions and apply

formula 5 in cumulative fashion if necessary. By this is meant that a

n+2'

running total Hi must be kept, composed of the sum of the individual
H2+2's contributed by the adjacent flooding squares already considered.

nt2!
i

test has to do with the fact that additional flooding cannot occur by

Before each addition to H a test must be made, however. This

formula 5 if the depth of water already established is such as to impede
the welr flow. Define a quantity 6;+27 as the amount by which the in-
terim level in 1 exceeds the land surface in the next square whose flood-
ing contribution is to be considered. Clearly, if for this square

n+2'
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then we may safely apply formula 5. It was decided to adopt a criterion

n+2 !
84 II»FCL\.,0<FC<1 (8)

for calculating a successive flooding contribution. If condition 8 isn't
met, with some choice of Fc’ then the level in the flooded square

currently reached by the addition of the previous flooding contributions
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is taken as the final level. Again, suitable choice of At for given Ax
or Ay should render this premature halt unlikely. But if 1t occurs,

then we may expect the insufficiency in the new water level (in square 1)
to be gradually eliminated over the next few time steps as a result of
the successive application of the equation of continuity to the new wet
field. The same remark applies to single-square flooding where equation
7 has to be used.

The flooding procedure is applied, where necessary, in a chain
manner. It may happen that a newly flooded square 18 capable of flooding
the next square, and so on. There will be a cumulative error in this
chain procedure, which can only be kept small in the case of a poten-
tially long chain, by reducing the number of links. This reduction may
be affected by reducing At, so that the volume transferred in the first
step 1s small.

It should be noted that when flooding of dry squares occurs from
the open boundary, it is not necessary to make any correction of volume
to the open boundary squares, for the latter represent in effect an
infinite source. Consequently, the open boundary squares in the printed
tables of { always show - values equal to those of the imposed tide.

In the present implementation of the flooding calculations, the new
wet boundary was sought for after every successive pair of time steps.
That is, the field equations were solved for two time steps as outlined
in Section 2; then every dry square was examlined for potential flooding,
and adjustments of the wet field boundary were carried out where appro-
priate; next, the field equations were solved again for the next two
time steps, and so omn.

Word must be said finally about the way in which the temporarily
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closed and open segment of the model boundary was handled. Inspection of
Table 2 will show that grid squares (11,12), (12,12)...(17,12) must be-
come alternately wet and dry as the tide evolves. When these squares
are dry they constitute a closed boundary, and when they are wet, the
boundary is of course open. It is necessary then to take cognizance of
the moment when such a boundary square as those enumerated becomes
flooded from the interior of the model, after having been dry. At that
moment it is assumed that the proper water level in the square concerned
is equal to the open boundary tidal level at the same instant. The -
value is therofore adjusted accordingly. When, however, the neighboring
tide drops sco far that a boundary square becomes dry, then that square
simply vanishes from the computation field.

A dilemma arises if a boundary square becomes dry at the time level
for which its - value is required as part of the solutlon along a
column, Letting n+2 be that time level, then the problem referred to
arises when at time level n+l the boundary is open, and at time level
nt2 it is closed. Which boundary condition do we use? It is likely
that for small enough At, either condition will yield similar results in
the interior of the wet field. However, it was decided to make sure of
this by computing the model in both ways, i.e., with the boundary square
still considered as open at the final time level--albeit with a negative
depth--and with the boundatry square considered to be dry during the whole

of the time step, and therefore removed from the computation field.

3. Results for the Implicit Method
Before referring to the tables of results (p. 97 ff) it 1is
necegsary to mention an important modification of the computational

theory that was made becauvae of the presence of round-off error.
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After the computation of a new depth Hi j in the subroutine that
¥
computes the movement of the wet boundary due to flooding of dry squares,

the following criteria were applied:

Hi j'i Hc = 001 ft No flooding; square remains
' ary )

H > H Flooding occurs

Hence, minuscule depths were ignored for the purposes of computing the

new wet boundary. The logical eriteria

Hi,j 20 No floeding

Hi,j >0 Flooding

were found to be computationally unworkable. The reason for this is

that the water level Z,., must be computed immediately afterwards from

ij

the formula

= H (10)

35 = By,5 " P,y o

and if Hi i is so small as to be essentially unrepresentable in the
3
fixed-point format X.XXX... where the X's are decimal digits, then the

results of the subtraction in equation 10 will be

51,5 T TM,3

and consequently when 1-1i is reconstituted in the main program from the

»J

equation

Bi,9 = 51,5 ¥ Byy

we will obtain

Hi,j =0 ,

an exact zero. This exact zero must certainly lead to trouble when
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the logarithm of H is required, as in the calculation of the Chezy-

i,
Manning friction function C.
For consistency, a similar artificial criterion was applied to the

test for dry squares after solving along a row or column using the field

equations. Logically, a square 1,] will become dry when

However, this condition was changed to

Ci,j_j - hi,j + Hc (11)

with Hc defined as in criteria 9. The use of condition 11 will certainly
improve the readability or interpretaticn of the output, when, instead of

the printed result,

which 18 the consequence in a case where gi,j actually exceeds _hi,j by
a negligibly small amount but suffers round-off of the rightmost digits
in output, we have instead a blank or coded location, meaning that the
square is dry. In most cases computed, the selected value of Hc was
0.001 ft. The difference between a truly dry area and one covered by
less than 0.001 ft. of water is academic. The small depth of water that
may be present when a square is removed from the computation field is of
course retained in memory so as to be added back into the field when
flooding occurs.

In section 2, it was stated that the Manning coefficient n has the

approximate value 0.026 for estuarine bottoms. Since no value has been

determined for marsh grass 1in flat tidal regions, it was decided to
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begin with this same value of 0.026 in the present model. A working
assumption like this should suffice to demonstrate the feasibility of
the mathematical technique, which is all that is aimed at here.

With these preliminary remarks, we may now turn to an examination
of the computationms.

A number of trials of the model were made, using the solution pro-
cedure outlined on page 64, and covering a range of time steps from in
excess of 1 minute to as small as 5 seconds. It soon became apparent
that in order to avoid spurious oscillations along rows and columns,

At had to be less than 20 seconds. In fact, solution convergence for
the implicit method was obtained at At = 10 secs; for with &t = 5 sec,
the few differences in 7 were negligible. Comparing the printed wvalues
of U and V for the 10 and 5 second cases (which were output every 2.5
hours of tidal time) there were but rare occurrences of any differences,
and these were unimportant.

The spurious east-west oscillations of 7 obtained with At = 20 secs,
could be clearly recognized as such, for their wavelength was twice the
grid interval. Moreover, minima were so pronounced in some locations at
times between mean and high water as to be negative. Oscillations in
the north~south direction seemed generally to be of longer wavelength.

Table 4 shows selected output (the print-out was half-hourly) ob-
tained with At = 10 secs. There is no trace of an oscillation of ¢
across the wet area; for the water surface moves, when the entire Model
Area is flooded, almost as a uniformly elevated sheet. That this be-
havior should be expected can be seen from consideration of the minimum
shallow water wave velocity, ﬁﬁf

min
most elevated marsh point, where H = 0.15 ft. Clearly, with this minimum

= 2.2 ft/sec, at high water over the
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velocity a disturbance of elevaticn will have propagated from one open
boundary to the center of the Model Area in the north-gouth direction
in sbout 2.3 minutes; and since (a) the difference in Z-elevation for a
phase difference corresponding to 2.3 minutes is only 0.01 ft approxi-
mately, and {(b) the wave velocity will be considerably higher over the
depressed areas of the marsh where H > Hmin’ we may expect the elevation
differences involved to be less than 0.01 ft at any given time during
the flood stage and therefore unnoticeable with two decimal place
accuracy.

Returning to comnsideration of the effect of differing length of
time step in the pure implicit solution technique, it is evident that
At 1s quite critical in the region 10-20 seconds for the given grid
spacing of approximately 51 ft. In order to test the idea that At/As
is the controlling ratio in determining the presence of spurious oscil-
lations for the implicit as well as the explicit method of solution, the
case At = 20 secs was recomputed, but with the grid interval doubled.

Thus for this test case
Ax = Ay = 102.56 ft.

Representative results for the first 5 hours of tidal time are shown in
Table 5. Clearly, spurious oscillations are no longer present, and the
f~ values are in fact closely similar to those of Table 4. However, the
velocities in the double grid-size model are generally larger (see Figs.
5 and 6).

For the present model, the F-L-C limit on At/As is given by

8L < L . 0.11 sec/tt.
v 2 gh
max
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Hence it appears that for accurate results with the Alternating Directions

Implicit method of page 64,

At 3.6 - 2.5
As Y 2gh g
max max

One can compare this result with the finding of Sobey (1970), who
showed analytically that Leendertse's Implicit-Explicit method will yield
accurate results for the linear equations when A/As (where X is the
wavelength of fluid motion) 1s as small as 50, provided At/As <
1.25/ vgh. Hence the present criterion, relating to the pure implicit
method appears to be more restrictive, since A/As >>50.3

Having obtained what appears to be a satisfactory solution using the
pure implicit technique, it was decided to test the accuracy of this
solution by including the explicit steps represented by equations {(3b).

With At = 10 secs, and other parameters as in Table 4, the Implicit-
Explicit method proved unstable, with spurious oscillations manifested
after 1.0 hours of tidal time.

With At = 5 secs, the Implicit-Explicit method gave results virtual-
ly identical to those of Table 4 over the 10.0 hours of tidal time com-
puted, there being six differences in 7, each of one unit in the second
place of decimals, in the first 4.0 hours. The ¢ results with At = 2 secs,
computed for 4.0 hours, differed in only five values (again by one unit
in the second place of decimals) from those im Table 4. Hence, the

original surmise that there would be no advantage in calculating Vn+l

Un+2 with explicit steps appears to have been proven.

ad

3For a linear system of equatlons sclved in conjunction with a
sinusoidal foreing function of period T, the wavelength is TV gh.
Hence, with T = 20 hrs, h = 1.3 ft, A ~467 x 103 ft.
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Examination must now be made of the success of the moving boundary
procedure. In the following description, all computations will refer to
solutions obtained with the pure implicit technique.

We note first that the instability in the results computed with At

> 20 secs renders it impossible to detect any effect, if present, of

diminishing time step upon the new boundary depths established in the
dry areas. However, we can note that there is a diminishing occurrence

of conditions of type 6, Section 3, as the time step is reduced. Thus,
in the computation with At = 20 secs, Fc = (0,5, He = 0.001 ft, there

were 265 flood error messages of type 6 in the first 10 hours, ylelding
an average of approximately 1 message per 7 time steps. With At = 10 secs,
however (and other parameters the same) there were only 7 flood error
messages in 10 hours, yielding an average of 1 message per 514 time steps.
With At = 5 secs, the message rate was 13 in 10 hours, or an average of
approximately 1 per 554 time steps. Clearly them, even with large time
steps, the flooding computation as regards the nonoccurrence of conditions
of type 6 is physically meaningful.

One also wishes to know the frequency with which a multidirectional

flooding procedure is aborted because of the achievement of an excessive
flood depth in any initially dry square. The relevant error condition
is given by the violation of condition 8 im Section 3. Messages indi-

cating violation of condition 8 were printed out during onme run of the
standard case corresponding to Table 4. It was noticed that they became
more frequent as tidal time increased. Between 9.0 and 9.5 hours there
were 314 messages, yielding an average of approximately 2 messages per
time step. It appears then that with At = 10 secs, multidirectional
flooding is not significantly cut of€,

A word must now be said on the subject of the question raised at

79



end of Section 3. Two numerical cases were computed to decide whether
there was a significant difference between the results obtained with a
negative depth allowed in the open northern boundary at time level n+2

(see p. 71) and the results obtained with no negative depth allowed. The

n+?2 >

1,12 ~h

first case (with (C has already been considered, it being

1,12)
n+2
the standard model of Table 4. The second case (Ci,12 * _hi,12) vas
computed with the same parameters as for Table 4. No difference in ¢ for
the two cases over the 23 hours computed was observed. It appears then

that the type of boundary condition used in row 12 is immaterial.

The decision was made to compute the remaining cases studied with no

n+2
%y,12°

A further gquestion remains concerning the best value of the param—

restriction placed upon

eter Fc’ which determines the degree of multidirectional flooding that
may occur in a given square. To test the sensitivity of the model to
varying Fc’ solutions were obtained with F = 0.2 and Fc = 1,0, other
parameters being as in Table 4. The results for the 8.5 hours and 12.0
hours computed respectively in the two cases were virtually identical to
those of Table 4 in which Fc = 0.5. The few differences in 7 observed
were moatly of the type that eilther a zero was printed indicating a dry
square in the one case, where in the other a two-~decimal place number
equal to -h was printed, or vice-versa., Thus condition 11 had been
satisfied in the instance of & zero being printed, but not when the
g~value printed was equal to -h for the square concerned. Consequently,
the indicated difference of ¢ must be leas than 0.005 ft. From these
results it may be assumed that the choice of Fc is not critical.
Returning to a discussion of the results in Table 4 obtained with
At = 10 secs, 1t will be seen that Z-~values are only given for a little

over one tidal cycle of 20.0 hours. The second tidal cycle yielded
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results similar to the first, with but minor differences in a few
locations during the flood stage. There is thus a rapid achievement of
cyclic equilibrium using such a short time step. Shaded areas in Table
4 indicate dry parts of the grid, or at least parts that are "dry"
within the limit of Hc = 0.001 £t. But where a water level has been
printed within a shaded square, this indicates that the level, to two-
place precision, equals -h. Consequently, in these locations the local
water depth exceeds Hc’ but by such a small amount as to be insignifi-
cant.

With every computation of the model, there were also output at 2.5
hour intervals, the U and V components of velocity. Inspection of U and
V at 2.5 hours and 22.5 hours showed that the start-up error consequent
on setting U=V=( everywhere in the wet field at time zero (when
t = 0), had become essentially eliminated at 2.5 hours, since there was
good agreement between the velocity fields at both times, one tidal
cycle apart.

Current vector diagrams were plotted by the computer for the cases
of Tables 4 and 5. These are shown in Figures 5 and 6 respectively. In
both figures, velocity vectors were eliminated from squares in which a
thin film of water remained after the square had become hydrodynamically
isolated from the source. By the expression "hydrodynamically isolated"
is meent that the water surface in a square 1s discontinuocus with the
water surface in adjacent squares (1f such surface is defined), owing to
the land surface in the square concerned being above the water surface
in one or more adjacent squares. In this case, spurious values of the

velocity components may be generated by applying the field equations.
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Velocity components were less than 0.1 ft/sec.
Comparing the vector diagram for the double size grid at 2.5 hours
(Fig. 6) with that for the same time in Figure 5, shows at once that the

current magnitudes are greater for the former model.

4. Results Using Leendertse's Implicit Scheme

In Section 2 allustion was made to the implicit equations of
Leendertse (Leendertse and Gritton 1971), which used three layers in
time: n-1, n, and ntl for the solution at time level ntl. Part 1 has
shown that in a simple two-dimensional model with rectangular boundaries,
open at one side, the use of Leendertse's three-layer scheme affords a
much larger time step than is possible using the implicit-explicit two-
layer scheme already described. If the time atep of a given model is
small enough compared to the tidal period so that the implicit two-layer
scheme can give accurate results, the question then exists as to whether
an implicit three-layer scheme will prove to be temporally more advan-
tageous. To answer this question in the present instance, it was decided

to recompute the results using the following finite-difference equations:

n+l n =1 ol =1 n+l
- + (H U - U +
(ci,j Ci.j) ( ui+l,§ 1i+l,3 ug :L,j)
At Ax (12)
i v -E VD =0
( vi,j+1 1,3+l ug g i,j)
Ay
o+l _ . n-1 ntl ((n=-1 _  o-1 &0 n-1 _ »n-1 _
(Vi = Vig) + Uy (Ui, I R W Y
25t 2A% 24y
+1 , n-1 +l n-1 o+l n-1
Ve, + Tt - + + g0 U
1,57 8 [(‘i.j i y) - (i c1-141)] (U + Uij)
Ax 2

2
[ ] o, ) .
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n+2 o+l =1l n+l =nt+l _n+l
- 1+ U - U
(Cisj Cisj) ( Ui+1.j i+1,3 ui'j i,j)

At Ax

- H v
vi,5+1 L3l vi gy 1,3

5y
n+2 _ yn ) L1 ( n _yh n+2 n ..\
(V_izi___v_i;_i + o Vg = Vo) * v v Vi)t
ZAt 2Ax% 2Ay

fU*?':_:} * g [(Ci,j + ;;.I,j) - (‘;i,j-l + g?,j-l) N g(v‘i'£+2 + V0 1)
Ay 2 2

o+ 02,0/, ey o

(ﬁn+1 n+2 =n+1 n+2)

1,] Vi,j vinj

It will be observed that in the above solution scheme neither UT nor
n+l

V' " is determined. In order to obtain contemporaneous components U™ and
V" of the velocity field, the following strategy was adopted: Write
. Ug—l + U1;+1
e T% . T | 13
1,3 2 (13)

For a small enough time step, equation 13 should obviate the necessity of
determining u® explicitly from the U-equation of motion.

The use of equations 12 implies some error when a square which is

n-1 fo

now wet at time level n was dry at time level n-1. For then ¢ T

that square is not defined. This problem was mentioned in the discussion
of Section 2, and was one of the factors leading to the initial choice of

a two-layer solution scheme in time. Moreover, the time derivative of U

o+l _ -l

centered at time level n, which involves the difference (U U ) is

likely to be in error if for part of the interval (n-1, n+l) the square
concerned was dry.

The definition of U:_; for a square 1,j dry at time level n~1, which
Ld

has a wet square i1-1,j adjacent to 1t, poses no problem; we have simply
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n-1

Ui,j = 0. If however, both squares i,j and 1-1, j are dry at time level
n=-1, the Ug_; is not defined, for no water exists at the position of
3
UI_;' The simplest recourse is to assume again that Uz-; = 0.
] ]

In the case of deciding what to use for ;?—;, when it is undefined,
»

the simplest strategy 1s to write

n-1
(Y 3 ~h

; 1,3 °
then the depth of water in the dry square at time level n-1 will be
appropriately defined as zero.

The effect of assuming Un—l = 0 as regards the calculation of 3U/3t
at time level n, can be appreciated from the schematic diagram Figure

1. -h in the calculation of 8z/3ax at

7(a); and the effect of assuming ;n—
at time level n can be appreciated from the schematic diagram Figure 7(b).
(Note that the error that would be introduced into the calculation of
ar/f ot at time level n 1if cn—l were to be used in the derivative, is
avoided in the first of equations 12 by using )

In both diagrams of Figure 7 the point F on the time axis denotes

the instance at which & dry square 1, begins to be flooded. The velocity
n+1

Ui 1 will rise from zero at F and reach some value Ui 3 at time level ntl.
3 ]
Similarly, the water level Ei j will start at the bottom surface at time
*
point F and rise to some value C2+; at time level n+l. For convenlence,
3
linear increases have been assumed in both cases.
a1 ( n+l Un—l)
When Ui j is set equal to zerc in the expression i,d i,j/ for
’ 25t
(31]/Bt)i 3 at time level n, we will have
]
" Un+1
(ﬂ) = 3,3 (14)
3t 24t
i,3
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Fig. 7. (a) Schematic increase of the U-component of velocity
after flooding of a dry square between time levels n-1 and n+l.

(b) Schematic increase of § in the same square between time
levels n-1 and n+l,
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In effect then, the ideal gradient of line FB (Fig. 7[a]) will have been

replaced by the artificial gradient of line AB.
(cn+1 + cn—l)
in the expression \7i,§ i,j/ as
1,3 5

the estimate of (;i j)n for use in calculating (a;/ax)“ at the position
L]

When gn_l is set equal to -h
i,3

of Ui,j’ we will have

(;1,3 ) ‘T,lj ~ Py (15)
2

m

The error is indicated as the interval § in Figure 7(b).

Hopefully, the use of equations 14 and 15 in solving the first two
equations of 12 will not significantly affect the accuracy of the results.
We do not expect errors in the convective acceleration terms consequent
on setting one or more of their velocity components at time level n-1
equal to zero, to have serious effect, since these terms are expected to
be of second order.

Results were computed, using the above strategles, for time steps
At = 60, 30, 20, 10, and 2 seconds, with other parameters as in Table 4.
Comparing the Z-values obtained respectively with the first three time
steps over the 23 hours of tidal time computed to those of Table 4, there
were observed to be scattered differences between the former and the
latter at corresponding times. These discrepancies never exceeded one
unit in the second place of decimals. At At = 10 seconds, many of the
differences in [ were of the type discussed in connection with the tests
of varying Fc; i.e., the differing value printed is either a zero
(indicating negligible water) or -h; hence these differences were trivial.
In the first 4.0 hours there were only nine differing values of 7, the
discrepancy being one unit in the second place of decimals. At At = 2

seconds, five differences from Table 4 were observed over the 4.5 hours
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computed, all of one unit in the second place of decimals. Two differ-
ences in the first 4.0 hours were observed at the same time step on com—
paring ¢ with the results obtained using the Implicit-Explicit method
and At = 2 seconds. One may svrmise from these considerations that in
regard to the water levels the solution is convergent for Leendertse's
Implicit scheme at At = 2 geconds, and approximately so at At = 10
seconds. Thus, in spite of the greater stabllity of the Leendertse
scheme, one must still descend to approximately the same step of 10
seconds as was found to be adequate for the earlier implicit scheme
studied, in order te obtain comparable accuracy of Z.

The situation with regard to the velocity solution is not so favor-
able., The velocities obtained with the Leendertse Implicit scheme would
appear to require an even smaller step for comparable accuracy with those
cbtained by the earlier implicit scheme (to be referred to hereafter as
the "Implicit scheme" without qualifier). This fact 1s revealed by an
ingspection of Tables 6, 7, and 8. In these tables the U and V components
of velocity calculated using the Leendertse Tmplicit scheme, the
Implicit scheme, and the Implicit-Explicit scheme, are given for the same
time level of 2.5 hours.

One easily notices in Table 6 that certain velocity components in
the upper left corner of the Model Area are large compared with those for
the same locations in Tables 7 and 8. Moreover, the values in the latter
two tables agree well, a fact inspiring confidence in their general valid-
ity. While a convergent sclution for 7 appears to have been approximately
obtained for the Leendertse Implicit scheme at At = 10 seconds, it would
appear likely that local sensitivity in the velocity determination to the

ratio As/At, renders this magnitude of At still too large for convergence
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of the velocity solution. Looking at the form of the finite difference
expressions for the time derivatives of U and V (equations 12) shows that
the relevant time step here is not At but 2At, Hence, as far as the
velocity determination is concerned, we are dealing with a time step of
20 seconds when At = 10 seconds. This is well above the Friedrich/Lewy/
Courant limit of 5.6 seconds for the model (see Sec. 2).

In Figure 8 selected values of the U component are shown as found
by three methods, and for various time steps. Since the Implicit and
the Implicit-Explicit schemes yield identical wvalues, to two place
accuracy, at widely differing time steps (10 seconds and 2 seconds
respectively), these values of U will be taken as convergent. It camn
then be seen that even with At = 2 seconds, the Leendertse Implicit
scheme has not yielded a convergent solution for U im the locations
indicated. This is surprising, in that the relevant time step for the
acceleration terms 1s a mere 4 seconds, less than the F-L-C limit.

In order to demonstrate further the likelihood of the assumption
that the effect limiting the accuracy of the velocity determination is
the relative magnitude of As/At as compared with the local value of JEF,
it was decided to recompute the double-sized grid model using the Leen-
dertse Implicit scheme, With A& t = 10 seconds, the latter scheme showed
seven differences of £ (not exceeding one unit in the second place of
decimals) from those of the Implicit scheme (At = 20 seconds) in the 5
hours computed. With &4 t = 2 seconds, the differences (again not exceed-
ing one unit in the second place of decimals) were reduced to five in the
5 hours computed. Hence the rZ-solution can be regarded as approximately
convergent. Figure 9, similar to Figure 8, shows that U, when At = 2

geconds, while not convergent In the locations indicated, does agree
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L At = 60 gecs

L At = 30 secs

s 4 5 6 7 3 4 5 6 7
11 | -0.04 | -0.01| -0.01| -0.01{ ~0.00 11 | -0.04| -0.01| -0.00f 0.00| 0.00
10 | -0.08 | 0.04!{ 0.03| o0.02| ¢6.01 10 | -0.08| 0.04| 0.03| o.01| o.01

L At = 20 secs L At = 10 gecs

PNy I 4 5 6 7 3 4 5 6 7
11 | -0.04| -0.01| o0.00| o0.00| ©.00 11 | -0.03} -0.00| 0.00| 0.00|-0.00
10 | -0.06| 0.04| 0.02! o0.01| 0.01 10 | -0.04( 0.03| o0.02| o0.01] o0.01

L At = 2 secs I At = 10 secs

NI, 4 5 6 7 3 4 5 6 7
11 |-0.01| 0.00| 0.00{-0.00 |-0.00 11 0.00 | 0.00 {-0.00 |-0.00 |-0.00
10 {-0.02{ 0,01 | 0.01{ o0.01| 0.01 10 0.00 | 0.00 | 0.01 | c.00 | 0.00

I-E At = 2 sees

NI 4 5 6 7
11 | 0,00 | 0.00 |~0.00 | -06.00| ~0.00
10 | 0.00 | 0.00| 0.01| 0.00| o0.00

Fig. 8. Comparison of U Results t/Sec, at 2,5 Hours for Different

Computational Schemes and Time Steps

L
I

— Leenderitse Implicit Scheme
— Implicit Scheme Table 4,
I-E - Implicit~Explicit Scheme

All Parameters Except At cthe Same as in Table 4,
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L At = 10 mecs L & = 2 seca

i i

P 3 4 5 6 7 ] 3 4 5 6 ?
11 |-0.01 | 0,00 | 0.00 j-0.00 (-0.00 11 | -0.00] 0.00f 0.00 [~0.00( -0.00
10 |=-0.03 | 0,02 | 0,02 0.01}| 0.01 10 | -0.01] 0,01 ©.01 | 0.01| 0.0

I At = 20 secs

i 3 4 5 6 7

11] 6,00 | 0.00|-0.00}-0.00]|-0.00

10| 0.00| 0.01] 0.01| 0.01| 0.0l

Fig. 9. Comparison of U Results ft/See, at 2.5 Hours for Two
Different Computational Schemes

L - Leendertse Implicit Scheme
I - Tmplicit Scheme Table 5

All Parameters Except At the Same as in Table 5.




better with the Implicit solution than does U in Figure 8 (determined by
Leendertse's Implicit scheme at the same time step) agree with its accu-
rate solution. The same consideration holds when we compare the Leeder-
tse Implicit colutions for the two grids at At = 10 seconds, with their
respective Implicit solutions. Hence, lengthening the spatial step for

a given time step has improved the convergence of the velocity determin-
ation using Leendertse's Implicit scheme. The conviction must be however,
that in the case of the present model, we are safer relying on the

Implicit scheme of solution described by equations (3a).

5. Effect of Increasing the Manning Coefficient

A final test of the model was made with a considerably larger value

of the Manning roughness coefficient n. Subsequent to beginning the

work described in this report, some values of n published by R. E.

Horton (Engineering News, 24 February and 4 May 1916), were brought to

the author's attention (J. D. 0'Connor, pers. comm.). One of these values
0.070 was recommended for "sluggish river reaches, weedy." Accordingly,
the Implicit model with parameters as in Table 4, was re-run, except

that n was changed to 0.07.

Selected results for ; are shown in Table 9. A general similarity
with the corresponding results in Table 4 is immediately obvious. Over
the deeper areas, f 1s the same; and In these squares the water level
continues to rise and fall uniformly., Some differences from Table 4
occur in the shallower squares close to the wet/dry boundary. It can be
observed that depths in the latter squares are generally shallower than
in Table 4 on the flood tide and deeper during ebb. The reason must be,
of course, that the greater bottom friction resulting from larger n

retards the incoming flow in the first case and the outgoing flow in the
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second. Qualitatively then, 1t can be seen that the model behaves as it
should.

Regarding the velocities obtained with the larger value of n, these
show a close similarity to those obtained using the smaller coefficient,
but there are some noticeable differenées. In Table 10 the U and V
components of velocity computed for n = 0.07 and At = 10 seconds at 2.5
hours are given. They may be compared with the corresponding components
in Table 7 for n = 0.026 and At = 10 seconds. Where identical values
occur, to two-place accuracy, it 1Is evident that the possible differences
between U or V in the two tables respectively must be less than 0.005
ft/sec. The larger values of U and V that occur over the shallower or
right-hand half of the field in Table 10 do not have a ready explanation.
To help render them accountable, the computation with n = 0.07 was re-
peated for a time step of 2 seconds and using the Implicit-Explicit
scheme of solution.

Table 11 shows the results for U and V at 2.5 hours computed with
At = 2 seconds and using the Implicit-Explicit scheme. It can be seen
by comparing Tables 10 and 11 that significant changes have occurred to
certain of the velocity components in the extreme right-hand field.
These changes are such as to bring either U or V in a few locations
closer to the values cbtained with n = 0.026 and At = 10 seconds (Table
7), or to those obtalned with n = 0.026 and At = 2 seconds, and the
Implicit-Explicit scheme (Table 8). Since Tables 8 and 7 show good
agreement, either may be used for comparison with Table 1l.

Clearly then, it would appear that using a larger Manning coeffi-
cient decreases the accuracy of the velocity solution somewhat for a

given At. In particular, with n = 0,07 and At = 10 seconds, the implicitly
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computed velocity components have not yet converged to the correct
solution in certain shallow parts of the field.

For water levels, one may regard the Implicit solution for r when
n = 0.07 as convergent at At = 10 seconds. Over the 4 hours computed
with At = 2 seconds, and using the Implicit-Explicit scheme, there were
only 17 differences in f from the corresponding results in Table 9, none

of these exceeding one unit in the second place of decimals.

6. Summary and Conclusions
The feasibility, from the mathematical standpoint, of computing the

tidal flow through a small area of marshland using the Alternating Direc-
tions Implicit technique of numerical solution combined with a special
flooding procedure based upon a hydraulic formula has been demonstrated.
The most reliable finite difference scheme, for the minimum of computa-
tional effort, appears to be that given by equations 3a. This is a two-
layer scheme in time; and in its implementation one avoids the necessity
of determining explicitly the velocity components at every alternate
time level, by equating the unknowns U and V, to the previously deter~-
mined values one time step in the past. With a time step of 10 seconds,
in conjunction with a spatial step of not less than 50 feet, this pro-
cedure appears to be adequate.

While the present model, using the above method of solution, re-
quires some 46 minutes of running time on the IBM System 360/Model 65 to
compute one 20-hour tidal cyecle, the running time would be quite reason-
able on one of the newer, large machines.

In the calculations, two Manning roughness coefficients were used:

n = 0.026 and 0.07. The value was found to be not critical, since similar

results were obtained with both coefficients, especially in the deeper

areas where exact similarity of ¢ obtained. The smaller wvalue had an
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advantage from the point of view of computational testing: it reduces
the bottom friction and so allows a greater current velocity over the
marsh. This in turn allows the water surface to rise uniformly every-
where not close to the dry boundary. One thus has a quick means of
estimating the accuracy of the water level solution obtalned with a
glven time step; for, then, deviations from uniformity introduced by
computational error are easily noticed. A more real study of course,
must attempt to establish close limits on the value of n appropriate to
mud flats covered in Spartina grass. This can only be done rigorously
by comparing the predictions of the model with observation.

Of necessity, the temporarily open and closed boundary in the model
was treated in isclation from the field outside the Model Area., Thus it
could only be flooded (when "dry") from within that area. 1In a real-
data study, a temporarily open and closed boundary would have to be
observationally monitored by one or more tide gauges.

Provided that the hydrodynamic model can be successfully tuned in
regard to the Manning roughness coefficient, it should provide a useful
tool for the study of marsh circulation, water exchange rates, wind
effects, and even dissolved or suspended organic components——1if it be
suspected that the latter may vary in horizontal space over small areas.
For & study of water composition, there would of course be necessary an
additional equation: the diffusion-dispersion equation.

However, even without proper tuning of the Manning coefficient, one
should be able to use the present model for relative studies, an example
being to ascertain the relationzl effects of different boundary configura-
tions on the net volume flow over a given area per second. It is easy

to introduce theoretical obstructions into the Model Area--such as canal
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banks—and recompute the current field. The modified field may then be
compared with the unobstructed field, and the result of comparison used
as a basis for decision-making in the placement of linear obstructions

across the marsh. From the biological viewpoint one would wish to main-
tain the circulation as vigorous as possible, over as much marsh area as
possible, in order to ensure a high exchange of dissolved and suspended

nutrients.
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