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ABSTRACT

Part 1 details the developmental steps that led to the creation of

a two-dimensional hydrodynamic model capable of predicting water levels

and current velocities within an area of arbitrary size, shape, and

boundary nature  open or closed!; and capable of predicting also the

location of closed boundary segments as a function of time.

Restrictions on the applicability of the mode1 are:

1! There must be negligible variation of horizontal velocity over

most of the depth of the fluid layer

2! There must be negligible vertical velocity

3! There must be negligible vertical shear owing to horizontal

velocity gradients

4! There must be negligible pressure and buoyancy forces arising

from any small variations in salinity.

In Part 2, the feasibility of computing the tidal flow through a

small area of marsh  roughly 1,000 x 600 sq.ft.! using equations and

solution techniques described in Part 1, is demonstrated. The model

allows for the inundation of and withdrawal of water from arbitrary

areas of the marsh, and is quite general in regard to the size, shape,

and open or closed nature of the boundaries.



Part 1

Development of a Two-Dimensional Hydrodynamic Numerical Model
for Use in a Shallow, Ne11-Mixed Estuary





The coast of Louisiana is characterized by several shallow estuarine

systems, of which Barataria Bay is one of the largest. In the brackish

regions of these systems, the parts not always under water consist of

mud flats covered with marsh grass. Between the mud flats water depth

will not usually exceed ten feet and is most often less than five feet.

The elevation of a mud flat above mean tide level is about six inches.

At low water at certain times of the year, mud flats may be exposed; at

high water they are submerged. Offshore, in the Gulf of Mexico, the

astronomical tide has a range of about one foot; and it is this small

tidal range combined with the exceedingly flat nature of the terrain

over many square miles that has made possible the vast extent of the

brackish marsh.

Going inland from the Gulf, one finds water becoming less and less

brackish, until finally it is fresh. The possibility exists, however,

for the freshwater regions to be inundated with salt water as the result

of storms blowing from the south. In this case, Iarge areas of fresh

marsh normally beyond the tidal reach and barely covered with water may

suddenly be submerged to depths exceeding a foot.

Considerable interest exists in studying this transient storm-induced

phenomenon from the point of view of its reaction upon the aquatic eco-

system. Hence a large-scale hydrodynamic model of an estuarine system

such as Barataria Bay is indicated. Interest also exists in the ecology

of the brackish mud flats that are intermittently covered with water;

and here again a hydrodynamic model of the water exchange would be useful.

For both of these models � the large and the small scale � a variable

boundary feature is essential. The solid boundary must be allowed to



l. Equations

The two-dimensional vertically averaged equations governing a homo-

geneous hydrodynamic system in which Coriolis forces and wind stresses

are present may be written  Hansen 1956, Leendertse 1967!

BHU BHV 0
Bt + Bx + By

s
T

X

pH
U +V� +U � +V � � fV+g~+ � � +gBU BU BV Bv l 3Po

3t Bx. By Bx p 3x
 l. 1!

HC

v~+v2
s

pH
� +U � +V � + fU+g � + � � +gBV BV BV Bq 1 BPo

3't Bx 3y By p By
HC

where the symbols have the following meanings:

� water level above a given horizontal reference plane

H � depth of water above the bottom   h + g, where h is the depth of

the bottom below the reference plane!

U,V � vertically averaged x- and y- components respectively, of the

horizontal velocity component

f � Coriolis parameter   2 Q sin g, where G is the earth's angular

velocity and g is the latitude!

g � acceleration due to gravity  negative in the z-direction!

C � Chezy function used to calculate the bottom stress. According to

the Manning formula:

vary its position with time. In the following sections, the developmental

steps leading to the creation of such a model or "solution strategy" are

given.

Not included in this report is a description of the dispersive

feature governing the concentration of suspended nutrients, which is

important to biological studies. However, diffusive-dispersive effects

may be combined with the basic hydrodynamical framework described here.



1.486H

n

where n is the Manning roughness coefficient

s

x ~
9 � x- and y- components respectively of the wind or surface stress

P � atmospheric pressure at the surface
0

results with observed data.

The second method is complicated by the fact that' n, the Manning

coefficient, is not known a priori; but a little experimentation with dif-

ferent values of n should indicate the appropriateness of the major

assumptions.

In some cases there may be significant horizontal density gradients

in the water owing to the presence of dissolved salts  salinity!. These

will create an additional forcing effect in the horizontal direction.

The terms to be added to the equations of motion are

raz dU-equation: ~~ g-Xp J az
z

jr' aV-equation:

where the symbols < > indicate vertical averaging from z = -h to z = q.

Implicit in equations l.l are the approximations of constant hori-

zontal velocity from top to bottom of the fluid layer, negligible vertical

velocity, negligible vertical shear because of horizontal velocity gradients,

and constant density. Indications of the accuracy with which these require-

ments are met can be obtained in either of two ways:

i! Direct sampling of the currents and densities within the system

ii! Computation of a model using equations I.I and comparison of



A discussion of these additional force terms and of the simplifying

assumptions described above, may be found in Pritchard �971!. In what

follows, it vill be assumed. that the medium ia sufficiently homogeneous

that equations 1.1 are adequate to compute the motion.

2. Choice of a Finite Difference Scheme

Equations 1.1 must be expressed in finite difference form for the

purpose of achieving a numerical solution.

The so-called "implicit" method of solution is used, since this has

been shown, in the case of linear equations, to be unconditionally stable.

A possible finite difference scheme for the implicit solution of the two-

dimensional hydrodynamic equations was given by Leendertse �970!. The

equation of continuity and the U-equation of motion in Leendertse's scheme

can be written as follows:

  n+1/2 n � +1/2 Un+1/2i,j i,j/   i+1/2,j i+1/2,j i-1/2,3 i-1/2,3!
+ +

At

2

n Vni, j+1/2 i, 3+1/2 i, 3 � 1/2 i, j -1/2!
Ay

  n+1 2 n-1/2 $ n+1 2 gn-1 2 Un-1
1+1/2,j 1+2/2,j! i+1/2,j I, 1+3/2,j ~1-2/2,j!

+ +
2Ax

�. 1!

  n+1/2 n-1/2q

~n +~
  i+1,j i+1,j!

i+1/2, j Ax

V*" iVn V"1+1/2, j l, i+1/2, j+1 1+1/2, j-l!
2Ay

n+1/2 n-1/2~ / n+1/2 n-1/2 y /' n-1/2 ~ /'>�n
i,j i,j ! Pi+1/2,j i+1/22j! l, i+1/22j/I   i+1/22j!

2 2

i+1/22 j   i+1/2, j! x i+1/2, j



In these equations a superscript   ! denotes 2-point averaging, and a

superscript  *! denotes 4-point averaging of a given variable.

av avThe equation for � is analogous to the last above for � except
3t 3t

that all times are increased by ht/2 ~ It need not be given here. The

grid scheme utilized in writing Equations 2.l is shown in Figure l.

The separation of   and h in space results in the following

-n -n
expressions for the averages Hui l 2 and Cui l,2 centered on Ui

i+li2,j

+ h
n n

I + I I I-
i+I/2,j 2 2

u

i+I/2, j

where

 hi,j n 4 '92 1-1/2, j+1/2 1+1/2, j+1/2 1+1/2, j-l/2 1-1/2, j-1/2!

Rather than separate the points of h and < location it is more con-

venient mathematically to have both of these quantities refer to the same

position in space. Then H is given by the simple addition:
i,j

i j i j i j

There are also two physical reasons for keeping h centralized with respect

to the velocities, which will be described. Consequently, a grid scheme

was adopted identical to one that has been used by several authors in the

past for the explicit solution of the two-dimensional hydrodynamic equations.
-n

This is shown in Figure 2 ~ According to the scheme of Figure 2, Hu

must be given by

+
2 2-n i+l,j



x
O q!



Consequently, a pair of h's and a pair of g's are involved in the defini-

-n
tion of Hu as with Leendertse's scheme, the only difference being that

the paired h's lie at right angles. However, the expression for Cu is

much simpler than Leendertse's above. We have for the point i+1,j

i+1,j

-n
Only two h's are involved in defining Cu instead of six. in Leendertse's

expression. The effect of the latter is to smooth out undulations in the

bottom contour that have a width comparable to hx. This might be con-

sidered advantageous in cases where the mean slope of the bottom  over

many grid squares! determines the currents, and the small scale undulations

are essentially accounted for in the Nanning roughness coefficient n; but

in cases where undulations constitute important anomalies in the general

contour, then clearly the weighting provided by remotely located h's is

not conducive to accuracy. Consider a sinusoidal terrain running across

the grid squares in the x- direction, of wavelength L ~ bx. Clearly, if

h and h lie in the "next valley" they will have

no relevance to the estimate of h at U ~ which is what is required

to evaluate C there. The scheme of Figure 2, which utilizes h's no further

than hx apart, must provide a better estimate of h at the locations between

two adjacent h observations.

In the Louisiana estuarine systems there are many areas where the

bottom isscoured by relatively deep channels on the order of tens of

yards across. These are important conduits of the water flow. The width

scale of such a submerged gulley is much less than any practicable grid

spacing, Consequently, it, is not desirable to smooth out this type of

irregularity in calculating C.



Pig. 3. Stepped bottom topography showing flooding.
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But there is a second and more important reason for adopting a

finite difference scheme where t; and h occur together in the center of

a square. Whenever a canal or bayou occurs whose width is typically less

than the grid interval, one must represent such a feature by a whole grid

square, adjusting the constant depth h  across hx, say! so that the flooded

cross sectional area remains the same. Then all other factors being equal,

the volume flux will be the same. Now, were the h's to be given only at

the corners of a grid square, then the bayou depth would be totally

unrepresented. The model in fact would "see" no bayou! For this reason,

a coincident h and   are important. In the case of Barataria Bay, we have

a main tidal pass whose width, about one mile, precludes any representa-

tion by multiple grid squares. And so here, a central depth h must be

given.

A further simplification of Leendertse's finite difference scheme

was adopted. Whereas Leendertse used a three-layer scheme in time � n-1/2,

l
n, n+1/2 � it seemed desirable to reduce the layers to two: n, n+l. A

.2considerable saving in computer storage results therefrom; and we obtain

moreover, a simplification toward greater realism in the handling of a

moving shoreline or boundary. To appreciate the Latter point, consider

Figure 3 a! and  b!, which shows respectively, a grid "square" in vertical

section just before flooding and just after flooding, from the adjacent

square.

n+L*The calculation of the new level q 1 after the time step 5t between

the times n and n+L, proceeds as though there were a solid boundary exten-

sion AB at the edge i. In actual fact spill-over, or flooding, of square i

1
In his earlier models �967! solved with an alternating Implicit-

Explicit method, Leendertse used a two-layer scheme.
2

See p. 28.



will have occurred during At, and so we must estimate a new level <in+1

in square i based on some hydraulic formula. Next, we must deduct the

volume of water transferred into i from the water initially calculated

n+1
for square i-l, yielding a corrected level   in square i-1. The boundary

for further computations, i.e., for the next time step, has now been moved

to the edge i+1.

The displacement of time levels requires that the new time n for the

next step correspond to time level n+1 for the old step. And the new n-1

will correspond to the old level n. In square i-1 we have C defined,
n

but what of <i? It is undefined since no water existed in square i at the

old time n. This is the difficulty created by a three-layer solution

n-1
scheme in time. The two-layer scheme avoids this impasse since < for

the new time step is not required. The only levels needed to advance the

computations are those shown in Figure 3 b!. If by some expedient we

n-1
avoid having to use < in a square that became flooded at time level n,

we must still incur the d.isadvantage of having to keep in memory the con-

dition of every square, wet or dry, at time level n-l. This is so that

the necessity of transfer to a modified equation of motion  one that does

n-1
not use q ! at time level n may be established. In a two-layer scheme,

only the current condition of a square is recorded in memory, with conse-

quent saving of computer storage.

At this stage of the analysis, the question remains whether the two-

layer time scheme will be as numerically satisfactory as the three-layer

scheme. To decide this question, one-dimensional models of estuarine-type

geometry were computed using both schemes.

The one-dimensional three-layer system of equations utilizing the

grid scheme of Figure 2 and corresponding in averaging symmetry to the

system 2.1 is
12



i Hui+2 Vi+1 � Hui Ui
+

Ax
0

1 -1 +1 -1 U -1 +1 n-1 +1 -1

2At 2Ax hx 2 2

g  V,""+ V", '! U" 'I /H',  eu,! - O
2

where the surface stress term has been dropped for convenience.

The one-dimensional two-layer system is

i ri Hui+1 Vi+1 Hui Ui
At + Ax 0

+1 n n+ n+1 +1

At 25x bx 2 2
�. 3!

g  U +U!  U Hu  Cu!
2

0

equations for the 2L-4 unknowns. The quantity Ul, which occurs in the

finite difference expression for the derivative � at i 2, is outsideau

Qx

the computation field, and this means that a modification must be made to

either the equation of motion or the finite difference form of the

13

Systems 2.2 and 2.3 were applied to a rectangular basin of constant

bottom level, open at one end  i = 1! and closed at the other  i L!. A

sinusoidal tide was applied at the open end. The disposition of variables

to be computed is as shown in Figure 4.

and U are the two known and necessary boundary variablee, while

U2, q2, U3 |;3 UL 1 <L 1 have to be determined as functions of time.
A description of the implicit method is given in Appendix l. Here it

suffices to say that systems 2.2 and 2.3 lead to a system of 2L-4 algebraic



2 L-2 L-1 L

Fig, 4. Unknown and boundary veriablee in one-d<mensional >odel

14

 q ~ U2 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 4
L-2 u,=Q



derivative. Leendertse �967! has reported that the replacement of a

centrally symmetric spatial derivative at the boundary with a one-sided

derivative that utilizes interi,or points may cause local numerical

instability. He advises, consequently, that the derivative be dropped

from the equation when one of its datum points is not available. The

linearization should not introduce appreciable error in most physical

cases. Hence, the equation of motion was partially linearized at the

first computation point in the one-dimensional test models.

Length parameters were selected for comparability with the Barataria

Bay estuarine syste~. They were:

Lms 21

hx 1 mile

h~5 ft.

A Manning coefficient of 0.026  following Hacker, Pike, and Wilkins 1973!,

tidal amplitude 0.4 ft., tidal period 12 hours, and time step 5 minutes

were used. The tidal constants do not correspond to those of the Louisiana

coast  where typically the amplitude is about 1 foot and the period 20

hours!, but the shorter period reduces the computation time required for

a given number of cycles.

It should be noted that the time step of 300 seconds closely approxi-

mates the Friedrich/Leuy/Courant limit dt d ds/~2gh for stahility of3
max

an explicit scheme of solution. In the present model As/2/2gh + 295 sec.

It may also be noted that the choice L 21 for the number of grid lines

insures that A/hc ~ 100, where > is the wavelength of oscillation. Sobey
4

The symbol " bs" is used to represent a generalized grid interval:
either hx, far the one-dimensional model, or the lesser of N and by in a
two-dimensional model.

4 For a linear system of equations, solved in conjunction with a sinu-
soidal forcing function of period T, the wavelength of oscillation is given
by X=T~g . Hence, with T ~ 12 hours and h 5 ft, X <100 miles.

15



�970! has shown that Leendertse's Implicit-Explicit method of solving the

two-dimensional linearized equations results in negligible phase distor-

tion of the solution for A/Ax < 50 when At 1.25 As/vgh. Since the

present one-dimensional model is wholly implicit, and At < As/~gh, one

would expect the phase distortion to be even less. Amplitude distortion

is zero for Leendertse's solution scheme.

With the above inputs both finite difference models behaved satis-

factorily in computation, and negligible differences were observed in the

results for g x,t! and U x,t!. Table 1, p. 13, gives a few of these

results, and also some results for another finite difference scheme to

be discussed.

Although it was shown that schemes 2.2 and 2.3 yield virtually indis-

tinguishable results, some doubt remains as to how closely these results

approximate the true solution. In other words, are systems 2.2 and 2.3

the optimum schemes to use? To resolve this question empirically, it

would be necessary to test a variety of numerical schemes and compare the

results in each case with the analytical solution for the open-closed

boundary initial value problem. But no such analytical solution is avail-

able, owing to the presence of the nonlinear terms

BHU U U
ax '"d HC

not to mention the advective acceleration U � . If is linearized by
av
Qx Qx

replacing H with h  assuming g«H! and tF � is dropped, we are still leftaU

Qx

with the nonlinear bottom friction term gU~U~/hC , which is an essential

physical feature. It was therefore decided to investigate the numerical

behavior of a rather different physical situation that does have a simple

exact solution.

16



A level-bottomed frictionless rectangular basin, closed at both ends,

was considered. Any disturbance in this basin at time t = 0 will lead to

a sustained oscillation with the natural or resonance period of the basin.

The equations governing the phenomenon for small amplitude disturbances

are:

� +h � =0
ar, aU

Bt ax
�. 4!

� +g � =0av a<
3t ax

Let 1 be the length and h the constant bottom-depth af the basin, A the

oscillation amplitude and ~ the angular frequency. Then 2.4 with the

boundary conditions U 0 at x = 0, 1 has the solution:

Acos � 1 cos ~t

U = AP Sitl   ! Bill  Uli!

where

m II= � ~gh
1

The values 1 20 miles, h = 5 ft, and A = 0.4 ft were chosen so as to

render some comparison possible between the doubly closed and singly

closed models. With these parameters, the natural period of oscilation

turns out to be

T ~ 4.64 hours2

At time zero, a constant slcpe of the water surface was assumed,

equivalent to a straight line approximation of the function Acos  IIx/L!,

with values |. A and g -A at x = 0 and x = L respectively, in order

to simulate the artificial starting condition of a nonlinear model. With

this initial situation, nine distinct finite difference schemes involving

the implicit method were computed, and the corresponding numerical

17



n+1 n-1 n+1 n-1 n+1 n-1

2At Ax 2 2

n+1 n-1 n+1 n-1 n+1 n-1

i "i ~ 'i ' 'i 'i-1 'i- 0 � 5!
2At dx 2 2

The second best solution corresponded to the two-layer scheme of equations

2.3, namely

+1 ,n h Un+1 - Vn+'

At hx

Ui - Ui 4i +  i "-i 1 + 4i 1
ht hx 2 2

�.6!

The linearized version of Leendertse's equations 2.2 ranked third, but

was close in accuracy to 2.6.

18

solutions for the water height at a fixed point  near the end of the basin!

were plotted at hourly intervals. Also plotted on the same diagram was

the exact solution. This empirical approach was adopted as being more

economical in time and effort than the analytical method pursued by

Leendertse �967! and Sobey �970!. Time and space steps were as for

the open-closed model already described.

Only one of the numerical solutions became unstable, but six of the

others showed marked damping. It was easy to rank these solutions in

order of agreement with the exact sinusoidal function over the 9 hours

plotted. The finite difference scheme yielding the best results  in

which the fractional error deviation at times of maximum and minimum

water level during the first cycle did not exceed 10 percent! was as

follows:



It is noteworthy that the two-layer scheme corresponding to 2.5

U +U 1 U. +U
At hx 2 2

n+1 n n+1 n n+1 n

2 2

gave the worst results, showing instability after 3 hours. Clearly,

is better to make use of the next-preceding solution point in time  n-1!

as the known value with which to calculate the subsequent point  n+1!,

rather than to use the preceding point  n!. This is in the context of

the doubly closed frictionless basin, One would hope, however, that the

introduction of friction and of a forcing function at an open boundary

would render the distinction between the solutions obtained with the

three-layer and two-layer schemes less marked; and indeed this has proven

to be the case with schemes 2.2 and 2.3 applied to the one-dimensional

open-closed basin discussed.

A third difference scheme was computed for the singly open basin with

symmetrical terms corresponding to the linearized equations 2.5:

i ~i 1 Hui+1 Ui+1 + Vi+1 Hui Ui + Ui
2At Ax 2 2

�. 7!

Un+1 Un-1 Un+1 ~ Un-1 Un Un n+1 n-1

2At 2 2Ax Ax 2

 ~ + " !]  v"+>+ U" j.! ~tp~

The solution shoved a smaller amplitude of oscillation at points within

the basin than with scheme 2.3, and a phase lag of about 30 minutes rela-

tive to the solution for that scheme. Such phase lags had been predicted

19



by Leendertse �967! in his comparative studies of wave deformation using

various linear schemes. Some results for comparison with those of scheme

2.3 are given in Table l.

We see, in conclusion, that the chosen scheme 2.3 for the open-closed

basin, has a counterpart 0..$ for the doubly closed basin that ranks high

among those schemes tested. Moreover, the introduction of bottom friction

and a forcing function appears to render the numerical solutions less

sensitive to the type of differencing used. Hence, even if there were

no regular correspondence between the results obtained for two different

physical situations using equivalent difference schemes, we may feel safe

in selecting the two-layer scheme 2 ' 3 as the basis for a real-world

computational model.

3. The Two-Dimensional Test Model

Leendertse �967!, in his various hydrodynamic models, used an

Alternating Directions Implicit-Explicit method to solve his equations.

The solution strategy is as follows:

i! The equation of continuity and the U-equation of motion are

solved together implicitly at time level n to yield values

n+1/2 n+1/2
of g and U along each row.

The V-equation of motion is solved explicitly for V along
n+1/2

n+1/2 n+1/2 n+1/2
each column. We now have 4 , U , V everywhere

in the field.

iii! The equation of continuity and the V-equation of motion are

solved together implicitly at time level n+1/2 to yield values

n+1 n+1
of g and V along each column.

n+1
iv! The U-equation of motion is solved explicitly for U along

n+1 n+1 n+1
each row. We now have 6 , U , V everywhere in the field.
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TABLE i. Some computed values of vater level
for the oue-dimensiona~ open-closed basin
usin finite difference schemes 2.2 2.3 2.7.
Hour   10 Hour!

Scheme Scheme Scheme
2.2 �.3! 2.7!

is 9 miles fromThe observation point
the open boundary.

Nate:

21

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59
60

-0.02

0.09

0.19

0.24

0.22

0.14

0.06

-0.05

-0.14

-0.20

-0.20

-0.10

-0.02

0.09

0.19

0.24

0.22

0.14

0.06

-0. 05

-0.14

-0.20

-0.20

-0.10

-0.02

0.09

-0.03

0.09

0.19

0.24

0.22

0.14

0.06
-0.04

-0.14

-0.20

-0.20

-0.10

-0.03

0.09

0.19

0.24

0.22

0.14

0.06

-G.05

-0.14

-0.20

-0.20

-0.10

-0.03

0.09

-0.01

0,05

0.12

0.18

0.19

0.11

0 ' 06

0.00
-0.07

-0.13

-0.16

-0.09

-0.01

0.05

0.12

0 ~ 18

0.19

0.11

0.05

0.00
-0.07

-0.13

-0.16

-0.09

-0.01

0.05



At Ax Ay

V"  IJ"
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i,j2Ay

1 BPo s -nHu .,Cu ! + � � � v pHu 0
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+
Ax +- Ay � 0

At 2Ax

n+1

' + fV*n+' +
2Ay

Ay 2

-n+1 I -n+1 ! ~ 1 3Po s j -n+1
�. 1!

together with the explicit equations  Leendertse 1967!:

V"+1 V" + V
i 1 +n+1

2Ay i,j

n+J. ~ j U�n+J. vn
At 2bx

The whole procedure is repeated for the next pair of half-time

steps, and so on.

The two-dimensional equations adopted for the author's model, which

follow in form those of Leendertse �970!, with the restriction to two

time layers, are:



1 Po s -n+1
+ � � � r pHv 0

p

n+1 n+1 �n+2
i,j

2'At 2'

Ax

1 3Po s -n+2+ � � - z pHu 0
pox x ij

�.2!

The quantities with superscript   ! and  *! are defined as follows:

/ 1/6 1/6

2

j 1/6 1/6
Hvi

1

i,j 4 i-l,j 1 i,j+1 i,j i-l,j

1

i,j 4 i,j i+1,j i+1,j-2 i,j-l

The Alternating Directions Implicit-Explicit procedure was tested by

applying a sinusoidal tidal function to a square basin of constant bottom

depth, open at one side. Parameters of the model  calculated without

atmospheric forcing! were:

21 X 21

23

Grid dimensions
hx = 5280 ft.

Ay = 5280 ft.
h - 5 ft.

Tidal amplitude = 0.4 ft.
Tidal period 12 h
Coriolis parameter f = 0.712 X 10 rad sec
Manning coefficient = 0.026



Initially, a 5-minute time step was used. It was then found that with

both V-explicit and U-explicit intermediate steps, the model developed

an increasingly strong oscillation of  -values in the y-direction, of

wavelength 2hy, after 5 hours of tidal time, leading to negative depths

after 9 hours. With U-explicit only, the model showed an increasing

oscillation in the x-direction of wavelength 2~x after 17 hours; but with

no explicit steps at all, the computation proceeded satisfactorily for

the full 24-hour test period.

The presence of numerical instability with either or both of the

explicit intermediate steps is to be expected from the fact that ht

slightly exceeds the Friedrich/Lewy/Courant limit Ls/~2gh ~ 295 sec;
max

and the reason that the V-explicit step introduces a much stronger insta-

bility than the U-explicit step is of course because the physical situa-

tion is essentially one-dimensional in the y-direction. Along this

direction the principal driving force operates. The U-component of

velocity is much weaker than the V-component and only exists in the

present case as a consequence of the Coriolis terms. There is, therefore,

almost no change of 0 in the x-direction, at least under conditions such

that the results do not contain spurious oscillations.

The experiment was made of calculating the model implicitly at three

other time steps: 10 minutes, 2 minutes, and 1 minute. When the method

is wholly implicit, one substitutes for the explicit steps by letting V

at- time level n+l equal V at the preceding time level n, and U at time

level n+2 equal U at time level n+l.
5

Although this procedure is also "explicit," the term"explicit step"
will be understood to refer only to the case that the hydrodynamic equations
are utilized, and without such step or steps, the method will be considered
purely implicit.



The results for ht 10 minutes showed a strong spurious oscillation

of g in the y-direction after 3 hours of tidal time. The results for

ht = 2 minutes agreed very closely with those for ht = 5 minutes; and the

results with ht = 1 minute were likewise almost identical to those for

At = 2 minutes. C3.early, solution convergence has been obtained at

ht = 2 minutes.

The model was also calculated with both explicit steps included for

the time steps 2 minutes and 1 minute. Results were virtually identical

in both cases. It is therefore meaningful to compare the time histories

of g at a single point. in the field as obtained with the implicit method

on the one hand, and with the implicit-explicit method on the other, for

the common time step of 2 minutes. Figure 5 a! shows the curves plotted.

for 40 hours of tidal time at the point �0,20!. This is near the closed

boundary, where the phase difference and amplitude difference between the

curves for the two solution methods is greatest. It can be seen that the

phase advance of the Implicit-Explicit method, relative to the other, is

variable with time  probably owing to the distorting influence of the

starting conditions   U V 0 everywhere! and can be as much as one

hour. At a point halfway between the open and closed boundaries, the

phase differences are slightly reduced and the magnitudes of the maxima

and minima of 4 agree closely  see Figure S[b]!.

As a final experiment, the same two-dimensional problem was recal-

culated using Leendertse's 1970 approach  see also Leendertse and Gritton

[1971j!. The one-dimensional equations abstracted from the two-dimensional

equations have already been given �.1!; it is therefore only necessary

to say that in the second half-time step  n+1/24t to  n+l!ht, the variables

n+1 n+1
and V are implicitly calculated. Translated to integer time

levels, and using the grid scheme of Figure 2, the full equations are:
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0,1
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Implicit-Explicit
� � � I mp licit

Fig. 5. Cotttparison of solutions in the two-dimensional model
using the Implicit/Explicit and Implicit methods.



  n+1 Hn Un+li  H Vn Hn Vn

V*n Un !
n-1

� f V* +
i,j

n+1 n-li n+1 n-1

2ht 2hx 2'

Hu Cu 0

ht Ll,x Dy

]i -' ~ ! i'"- ~ - !]  ""' ~ " ! ]i""'!'  " ! ]'

Hn+1 Cn+1 0

The solution strategy is as follows:

i! Solve the equation of continuity and the U-equation of motion

n+1
together implicitly at time level n to yield values of g and

n+1
U along each row.

n-1 n-1 n n
Required in the calculation are < , U , < , and V

ii! Solve the equation of continuity and the V-equation of motion

together implicitly at time level n+1 to yield values of n+2

n+2
and V along each column.

n n n+1 n+1
Required in the calculation are < , V , < , U
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Repeat this procedure for the next pair of time steps, and so on. Thus,

while < is found at every time level, the U and V components of velocity

are only solved for at a1ternate time levels with respect to each other.

n+1 n+2
In the above scheme, V is missing; likewise U

If both components of velocity are required contemporaneously, then

n
one component � say, U � must be found either by solving the appropriate

equation of motion explicitly, or by interpolating between values at

ad]acent time levels.

Whether U is found from the formula
n

n-1 n+1

n i,j
or derived by explicit solution of the U-equation of motion at time level

n-l/2, storage must be reserved in the computer for the following

velocity arrays:

Un-1 Un Vn U~1 Vn+2
92

t
n+2 n

since V cannot be stored in V  as would be desirable! on account of

the cross-derivative 3V/3x in the V-equation of motion, which requires

V in the preceding column.
n

The velocity storage requirement for the Implicit-Explicit scheme

represented by equations 3.1 and 3.2 is

n n n+1 n+1

n+2 n
since here, V can be stored in V

Hence Leendertse's solution strategy requires one more velocity

n-1
storage array. The same implicit equations, however, involve 0 , and

therefore require an additional <-array also. This disadvantage of larger

storage requirement has already been mentioned in Section 2.
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The Leendertse Implicit model was computed at time steps equal to

10 minutes, S minutes, 2 minutes, and 1 minute. Almost identical

results were obtained for all of these time steps. The g-values also

showed close agreement with those of the Implicit-Explicit Nodel.

Table 2 displays results from each of the three solution models

at 21 hours tidal time, for each stable case computed. It can be seen

that for any given model the effect of varying time step is manifest

mostly in the part of the field furthest from the open boundary at g = l.

Furthermore, it would appear that for both the Implicit-Explicit model

and the Leendertse I~plicit model, solution covergence has been essen-

tially obtained at dt - 120 sec.

For a computer run time of fifteen minutes and At 60 sec, the

Implicit-Explicit model yielded hourly output up to 22 hours of tidal

time. For the same computer run time and the same ht, the Leendertse

n+1Implicit model  wherein Un was calculated from the mean of U and
m-IU ! yielded hourly output up to 25 hours of tidal time. There is thus

a slight time advantage, at a given At, in using the latter model, if

one is content to interpolate for one velocity component. However, the

time advantage becomes very great if the user is satisfied with less

accuracy; for then a larger time step can be employed � and one larger,

it would seem, than the maximum time step permissible to the Implicit

model, equations 3.1.

Using Leendertse's implicit method, one retains, however, the dis-

advantages of larger computer storage requirements and unnatural treat-

ment of the moving shoreline, as discussed in Section 2. A further point

to be considered is that in cases of very small spatial interval bs

 <100 ft!, where bt must necessarily be of the order of a few seconds,
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TABLE 2. The "ouare baein problem calculated with three solution
method at "1.0 hourn tidal time parameter- a on p. 0, �0,]! ft.

IIIIP-EXP NOdel
70ec 300 120 60120 600 60120

20 0.09 0.10 D ~ 10 0.03 0.03 0.02 0.02 0.03 0,03

19 0.09 0.10 D.03 0.03 0,020.10 0. 02 0.03 0.03

18 0.09 0.10 0 10 0.03 0.03 0.02 0.02 0.03 D.03

17 010 0,10 D 11 0 ~ 03 0,020.03 0.02 0. 02 D.03

16 0.10 0,10 0.11 0.02 0.02 0.01 0.02 0.02 0,02

15 0.09 0,10 0.10 0.02 0.02 0.01 0.02

14 009 009 010 001 001 000 0.01

13 0.07 0.08 0.00 0.00 -0.01 0.00 0.00 0.00D. 08

12 0.06 D.D6 0.07 -0.01 -0.01 -0.02 -0.01 -0.01 -0.01

0.05 -0.02 -0.02 -0.03D.04 0.04 -0,02 -0.02W. 02

10 0.01 0.02

-0.01 %,01

0.02 -0.04 -0.04 -0.04 -0,04 M.04 -0.04

-0.01 -0.06 -0.06 -0.06 -0,06 -0.06 -0.06

-0.05 -0.04 -0,04 -0.08 -0.09 -0. 08 -0.08 -0.08-0. 08

-0 09 -0 08 -0 08 -0 11 -0 11 -0 11 -0. 11-0.11 -0.11

-0.13 -0,12 -0.15 -0. 14 -0.15 &.15 -0.15-0.15

-0.17 -0,17 -0.18 -0.18 -0.19 -0.19 -0.19 -0.19

-0.22 -0.22 -0.23 -0.23 -0.23 -0.23 W.23 -0.23-0. 22

-0, 28 -0.28 -0.28-0.28 -0.28 W. 28 -0. 28 -0. 28 -D. 28

-0. 34 -D. 34 -0. 34 -0. 34 -0. 34-0. 34 -D. 34 -0. 34 -0. 34

� 0.40 -0.40 -0.40 -0.40 -0,40 -0.40 -0.40 &.40 -0.40

-0.13

-0.17

0.02 0.02

0.01 0.01



a tidal model could probably be computed with sufficient accuracy using

the simple implicit scheme embodied in equations 3.1; for when 5t «

tidal period, the phase and amplitude distortion introduced by equating

V with V , and U with U , must be negligible.
n+1 n n+2 n+1

4. Conservation of Mass

The finite difference equations 3.1 adopted for the two-dimensional

model must be shown to conserve mass in the sense that the only mass

changes occurring within the boundaries are those arising from the flow

of mass across the open boundaries.

Consider the equation of continuity in two dimensions:

BHU BHV

Bt Bx By

If we perform a double integration on each term from x 0 to x 1,

and y = 0 to y = k, we obtain

1 k k l l k

< dxdy = � dxdy � dydx
0 0 0 0 0 0

f  -! - -!,] f [ -! - -!,I'
The term on the left-hand side is the rate of increase of volume within

the area lk. The first term on the right-hand side is the net flux of

volume through sides k of the area lk, and the second term on the same

side is the net flux of volume through sides 1 of the area lk. Hence

the sum on the right-hand side is simply the rate of increase of volume

within the area lk which is equal to the quantity on the left.

In the context of our finite difference form of the equation of con-

tinuity, we must replace the continuous integration with a discrete sumna-

tion, taking the limits i 1-+L and j 1+K.
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It is therefore required to prove that

  n+1 n  -n n+1 -n n+L!

-n n -n

L K i +1 i +1 i
AyAx 0

l l Ay

The first term above can be written

n,n+1

~' j AxAyL K�

1 1

and this is clearly the mean rate of increase of volume within the area

defined by the Limits �,L! and  L,K! between time levels n and n+1.

Let the second term be expanded in the first subscript, keeping the

second subscript  j ! constant. We obtain

~i" 2~j 2,j L,j L,jf p 3>j 3~j 2~j 2~j/

l -n n -n n
Hv 1 Vi 1 + Hvi K Vi K Ax

7

The equation can now be written

> n,n+1

At

-n n
HvilV

-n n
Hv V Ax

1 i,K i,K

32

Similarly, the third term of the equation expanded in the second subscript

keeping the first subscript  i! constant, yields



The first expression in parentheses on the right-hand side is simply the

mean net volume flux into the basin in the x-directian between time levels

n and n+1. The second expression in parentheses on the right hand side is

the net volume flux into the basin in the y-direction at time level n. If

we discount the difference in time levels, then the sum of the two parenthe-

sized terms is the total net volume flux inta the basin at a given time

instant, which equals the instantaneous rate of increase of volume within

the basin. Since the left-hand term covers a time interval 5t, and the

right-hand expression embraces the same time interval, we can say that on

~ayers e the finite difference equations conserve mass. An increasing

error will result as the time step is enlarged. But then, the equations

generally become poor approximations of the true relationships when 5t is

excessive.

There is a further consideration of mass conservation that arises an

account of the possible variation of the boundary configuration. The effect

to be described does not seem to have been noted in the literature.

It is evident that whenever a negative water depth is obtained after

solving the equations implicitly along a row or column, then the square in

which the negative depth occurs must drop out of the computation field,

and a new boundary or set of boundaries is established. This is the

reverse of the flooding of dry squares: one or more wet squares becomes

dry. The question arises of what to do with the negative depth. It can

be shown that conservation af mass requires that this negative depth be

held in memory and added to the new positive depth temporarily established

when the dry square is flooded again  or, alternatively, the negative

depth may be added into the wet field depths in some distributive manner,

but this is more difficult!. It may happen that the sum so obtained is
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still negative, in which case this sum must be added to the next temporary

positive depth established when the square is flooded again, and so on

until a total positive depth is obtained.

The necessity for keeping a running account of negative depths and

adding them into the wet field may be shown in the following manner. Con-

sider a rectangular tank  Figure 6! having a single-stepped bottom and a

drain in the deepest corner. For convenience of calculation the tank has

unit bottom area in each region, so that depths and volumes are numerically

equal.

Figure 6 a! shows the initial state with depths of water Hl and H2

in the two depth regions of the tank. Figure 6 b! shows the final state

after a volume of water hV has been removed by opening the drain. The new

depth established on the left is H ', and the right region is now dry.

Clearly, the model simulates tidal ebbing from a flooded area of land ~

The ebbing process can be broken down conceptually into an unstable

intermediate state shown in Figure 6 c!, and then into a redistribution

of the water H2 such that the level in the higher bottom region is below

the bottom surface, thus giving rise to a negative depth  Fig. 6[d!!. Let

the new theoretical depths established be Hl" and H2" where H2" < 0.

Clearly, conservation. of volume gives

H2 = [Hl" � Hl-hV + H2"

Physically, all the water H should have gone into the left region, so

that the corrected level here is

H'H+H-AV
2 1
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Eliminating H2 from  i! and  ii! we obtain

H ' ~H "+H"
1 1 2

Thus, to conserve water, we must add the negative solution in the newly

dry area to the solution in the adjacent wet area. Without the correction

H2" in the present example, the volume in the left-hand region will be too

large.

For the tidal model it is more convenient to make the correction to

the same square that developed the negative water depth, performing the

addition when that square becomes flooded again. There is of course no

rationale for choosing any particular wet square to be corrected; nor do

we know how to distribute the correction among all the wet squares in a

row or column.

A departure in the present work from Leendertse's published method

 Leendertse and Gritton 1971! should be mentioned. Whenever there has

been an adjustment of boundary in a row or column, the values of   in

that row or column are not recalculated at the same time level. Rather,

a new time step is considered for every application af the implicit

solution. Zn Leendertse's procedure, the adjusted row or column is

re-solved at the same time step. It seems doubtful whether this doubling

of computational effort is worth the possible increase of accuracy.

Moreover, there is no reason why a row or column should be solved with

the new boundary rather than the original boundary, at the time step in

which the new boundary is established.

5. Computation of the Moving Shoreline

The advance of the wet boundary by flooding over dry steps in the
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 a!

qll 42
 ll+2

i-1

n+2"

 b! a!

Fig. 7.  a! Topopraphical upstep:  b! topographical do~mstep.
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Pig. 6. Stepped Bottom Tank.  a! Pull;  b! With Volume hV Removed;
 c! and  d! Conceptual Zntermediate States.





 n+2! At

Vol = mby
i

 n+2f!bt

dt �. 2!

Let us assume that W increases at a rate proportional to t' = t- n+2f! At.
Then we may write

W = at' and 'W a�.-f
bt
M

�. 3!

Hence, from 5.2 and 5.3 and the definition of t'

 n+2! bt

Vol = mby
i

 n+2f! bt

- � mAy o [ I-f! 2bt]
2 3/2 5/2
5

 l-f! 2bt
3/2, 3/2 3/2 , 3/2

0

or,

Vol = � mby  l-f! W At4 3/2
i 5 M

The new depth in square i is given by

H = Vol /bxby
n+2

� ~ 4!

Hence from 5.4 and the last equation,

 l-f! W 3/2

i 5 bx

Now the average value of the function l-f, assuming that all f's are
equally likely, is l/2. Thus on average we obtain

0.4 m W At
3/2

n+2

i
�.5!

bx

n+2
�.6!

If this condition is not met, then some interference of the weir flow

will occur on account of the water built up in square i. In order to

ensure condition 5.6, there will be an effective upper limit to the

permissible magnitude of bt for given bx.
38

It is to be noted that formula 5.5 can only be successfully applied to an

upstep when



To conserve mass, the volume of ~ater transferred to a dry square

must be subtracted from the wet field. For convenience of computation,

n+2
however, it was decided to deduct the flood volume H AxAy from the

adjacent flooding square only. Hence we obtain

n+2 n+2* n+2

and  referring to Figure 7[a]!

W = A � H
n+2

n+2
The largest possible value of W is equal to b, when H. = 0.

1

n+2
A special case arises if the corrected level q in square i-1

should be less than the new flood level q, in square i. Physically,
n+2

i

this is an unrealizable situation. What must happen, according to the

previous assumption of volume transfer from square i-1 only, is that in

the case of the upstep, a common level will be reached in both squares,

and so

n+2 1

i 2
�.7!

n+2 n+2
Thus a test should be made for the truth of the inequality q < q. , andi-1 i

1
W

1Hence the range of W is from 25 to a. We assume on average that

3
W

M 4
�.8!
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when this occurs, a revised depth is calculated by 5.7. However, At should

be so chosen as to render this special case infrequent or absent altogether.

Where common levels are reached in both squares, it is clear that



step.

Assume that the weir height W above the levee  square i-l in Figure

7[b]! increases steadily from time  n+2f!ht when W = 0, to time  n+2!ht

when W = W . Making the assumption as before that the water in square i

comes only from i-l, we have

W = b, - Hn+2
M

and the largest possible value of W is equal to A when H = 0.
n+2

n+2 n+2The test qi l < $i should be applied, and also a check to see if
n+2

the corrected level q is below the land surface in square i-1. If

either of these tests prove positive, then formula 5.7 can be used; so

1
that in this case W = � L. It is assumed that on average for the down-

N 2

step, equation 5. 8 also holds.

Substituting W from 5.8 in equation 5.5, we obtain

Hn+2 0.26 m~ ht3/2

Ax
�.9!

The use of equation 5.8 for W in the downstep situation is admittedly

somewhat artificial. We justify it merely on the grounds that �! the

levee situation should be infrequent compared with the upstep situation

and �! an error in the volume transferred should be eventually removed

by successive application of the equation of continuity to the new wet

field. The last remark applies also, of course, to any error in the

calculated volume for an upstep.

40

Consider now the downstep situation. This will obtain when flooding

occurs over a levee, as diagrammed in Figure 7 b!. The process is more

complicated than with the upstep, for here two flood stages occur almost

simultaneously. During 2ht water will appear on top of the levee, and

during the same time interval it will cascade down onto the next and lower



It is to be noted that 5.9 can only be successfully applied to a

downstep when

+ h
n+2 n+2

�.10!

To ensure condition 5.l0, there will be an effective upper limit to the

permissible magnitude of At for given dx.

Since every grid square i not touching a boundary has four grid

squares adjacent to it, flooding can conceivably occur from more than one

of these squares at once. We handle this possibility by calculating the

flooding from two or more perpendicular directions separately and then

adding the separate contributions in square i. Thus a running total

n+2' n+2H must be kept, composed of the sum of the individual Hi s contributed

by the adjacent flooding squares already considered.

n+2'
Define a quantity b as the amount by which the interim level in

i exceeds the land surface in the next square whose flooding contribution

is to be considered. Clearly, if for this square

n+2

then we may safely apply formula 5.9. It was decided to adopt an arbitrary

criterion

kF A, 0<F �n+2 c c �.1l!
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for calculating a successive flooding contribution. If condition 5.ll

with some assigned value of F is not met, then the level in the flooded
c

square currently reached by the addition of the previous flooding contribu-

tions is taken as the final level. Again, suitable choice of At for



given hx and hy should render this premature halt unlikely. But if it

occurs, when we may expect the insufficiency in the new water level  in

square i, j! to be gradually eliminated over the next few time steps for

the reason given earlier: namely, the successive application of the

equation of continuity to the new wet field.

Plainly, the accuracy of the flooding procedure can be improved by

reducing ht, appropriately. There must be a trade-off between the desired

accuracy in this area  within the limits of formula 5.9! and the computer

running time of the model. The topographical sensitivity should enable

the modeler to choose wisely here.

The flooding procedure is applied where necessary in a chain manner.

It may happen that a newly flooded square is capable of flooding the next

square, and so on. Since all these operations are carried out for one

and the same time step, there will be an increasing error in the estimated

magnitude of the flooding as one moves down the chain. Only experience

with a given model and time step can tell if this cumulative error is

important. Ef it should seem that the chain is too long and that it

occurs in a crucial area, then one may have to restrict the flooding to

one or two squares at a time before applying the field equations again,

or alternatively, reduce dt.
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APPENDIX A

Principles of the Implicit Method

Referring to equations 3.1, we write the first pair in the form

n+1  -n n

i~j p i+lsj 5x J i+1 j k i j Axe i j i j   i j+1 i j+1

-n n ! 5t

V* Hu Cu + ~t q +

ij ij kij+1 ij-1/2hy i,j 2Ax k'i ~ 3 i-l, jl

U" U". . + V*". Hu . Cu � � ' "' + T' DHui

Let

-n 5t
Hu,

i+1, j Ax
a.

i+1, j

-n 5t
� Hu

i,j Ax

n -n n ! 5t
A

~t
2Ax

b
i-l, j 2Ax

43

2 2 2 2

ij i+1 j i-1 j2 2 ij ij ij i j



� ~ U U . + V* Hu Cu - � � + r oH9

The multiplier Fl   0 or 1! is introduced into the expression for B in

order to take cognizance of the fact that the derivative  U � U . 1!/n n

Ui j+1 or Ui 1 undef ined
t

b! The case j = K-1 in which U lies outside the computation field.
t

 Here K is the maximum value of j.!

Thus the equations to be solved for 6 and U are
n+1 n+1

 A. 1!
b'' n+1 + b <n+1 + b, <n+1

ij ij ij il j ii ! ij

Suppose that the boundaries in the j th row occur at i I and i=L.

The boundary situations to be considered are:

i=I Ref erence

Open
Closed

Open
Closed

Closed

Open
Open
Closed

UOPENl

UOPEN2

UOPEN3

UCLOSE

2hy may be unavailable for co~putation. In this case we set F = 0. Other-
1

wise Fl = 1. In the case that j = 1, we omit the derivative altogether,

as the U-array must properly begin with subscripts 1, 1 in FORTRAN language.

The conditions requiring F to be zero are:

a! Proximity of dry land or an open boundary, rendering either



The system of equations A.l may be written in expanded form, dropping

the subscript j for convenience:

n+1 n+1

n+1 ,, Un+1 n+1
I I I+1 I+1 I+1 I+1 I+1

n+1 n+1

I+1 I+1 I+1

n+1

I+2 I+2
 iii!

I+1

n+1 + b'' Un+l + b n+1
I+1 I+1 I+2 I+2 I+2 I+2

 iv!  A. 2!
I+2

Un+1 + n+1
I+2 I+2 I+2

n+1

I+3 I+3
 v!

I+2

n+1 b» n+1 n+1
L2 L2 L 1 L 1 L1 Ll

 N-1!
L-1

n+1 n+1 n+1

L-1 L-1 L-1 L L
 N!

where

N ~ 2 L-I!-1

For each of the cases in Table 3, we must select a subset of equations

from system A.2 as detailed in Table 4.

n+1 n+1
It is to be noted that U = U are usually zero when they are given

quantities.

Reference Given uantitiee E uations Used No. 6f E uationa
2 I.-I!-2

2 L-I!-2

2 L-I!-3

2 L-I!-2
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UOPENl

UOPEN2

UOPEN3

UCLOSE

Un+1  n+1
I ' L-1

~n+1 ~n+1
I ' L-1

Un+1 Un+1
I ' L



n+1 n+1
Let us pursue the case < and U given.

n+1
If the term b' g is transferred to the right-hand side of  ii! in

n+1
system A.2, and the term a U is transferred to the right-hand side of

L L

 N! in the same system of equations, the matrix equation becomes

n+1

I+1
b' n+1

I+1 I I
b

I+1 I+1

n+1

I+1
a I

I+2 I+1

Un+1
I+2

bll bl I
I+1 I+2 I+2 I+2

n+1
'I+2I+2 I+3 I+2

n+1

I+3
b T b11

I+2 I+3 I+3 I+3

n+1
L-1bL 2 bL 1 bL B L-10 0 0 0 0 0

n+1
L-1

n+1

L 1 L L
o a 1 10 0 0 0 0 0

There are M = 2  L-l!-2 rows to the tridiagonal coefficient matrix above,

a solution can be found..

For each of the four boundary cases it is possible to write an

algorithm that will yield the unknowns along the row. Similar algorithms

will yield the unknowns along a column. As stated in Section 3, the

computation field is first implicitly solved along rows to yield q
n+1

n+1 n+2 n+2
and U and then along columns to yield < and V
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n+1 n+1 n+1 n+1corresponding to the N unk owns U +1 4 1 ' " U 1 ' ~ -1 Consequently.



Certain special cases must now be considered where the general solu-

tion algorithm is inapplicable ~ These are illustrated below with

the reference names over each.

LIOPEN2 UOPEN3 U CLOSE

I I+1 L I+1 L I I+1 I+2 L I L

UOPEN1

The equations for this case are

n+1 n+1 , n+1
I+1 I+1 I+1 I+1 I+1 I I

n+1 n+1

I+1 I+1 I+1 I+1

These have the solution:

  , n+1
I+1 i I+1 I I J I+1 I+1n+1

I+1 1 bl
I+1 I+1 I+1

n+1

U
++1 I+1 I+j. I, I+1 I. I !

I+1 I+1 I+1

UOPEN2

The equations for this case are

n+1 n+1

I I+1 I+1 I

n+1 ,, n+1 n+1
I I I+1 I+1 I+1 I+1 I+1

These have the solution:

n+1 t � b ' ' A
I+1 I+1 I+1 I+1 j I+1 In+1

bta btl
I I+1 I+1

UOPEN1

C?35
Open Boundary Square

Interior Wet Field Square

Q Dry Square



UOPEN3

The equations

bl bl1
I I+1 I+1

n+1 n+1

I+1 I+1 I+1 I+1

I+1

n+1 b'' Un+1 B b n+1
I+1 I+1 I+2 I+2 I+2 I+2 I+2

These have the solution;

n+1 I+2 I+1   I+1 I I / I+2 I+1 I+1 I+1 I+2 'l I+2 I+2 I+2/
I+1

I+2   I+1 I+1 I+1/ 1+2 I+1 I+1

U n+1 I+2 I+1 I+2 I+1 I I I+1 I+2 I+1 I+2 I+1 I+2 I+2 I+2
 a'

I+2 k I+1 I+1 I+1/ I+2 I+1 I+1

Un+1 I+1 1+1 I+1 ~ 1+1 I+1 I+1/ I I+2 I+2 1+2/ I+1 I+1'l Iel I I /
I+2

I+2 1 1+1 I+1 I+1/ 1+2 I+1 I+1

UCLOSE

n+1
Here, a single equation determines the unknown g

n+1
A

Similar cases to the four above may, of course, occur along columns.

n+1

I+1

n+1

I+1 I+1

for this case are

I I i I+1 I+1 I+1!

n+1 n+1

I+1 I+2 I+2

n+1

I+1 I I



i = I x!

Similarly, if the j coordinate lines are also stretched by a functional

relationship with the distance y from the origin, we have

j - J y!

The chain rule of differentiation requires that

a B BI , B B BJ ,
Bx BI Bx By BJ By

For the finite difference representation of the derivatives, these

operator relationships translate to

B A BI , B A BJ ,
Bx ar Bx By AJ By

where 6 is the difference operator.

Since AI = AJ 1, it will be convenient to replace AI and AJ by

As  =1!. Then equations 3.1 with stretched coordinates can be written

in an obvious shorthand:

n+1 n

-+
i, j+1/2! i+1/2,]

As

+' � Vn U"+'
i,j

ht

! Jli j � f V*
2As

APPENDIX 8

Use of a Stretched Coordinate System

Suppose that for reasons of field resolution the coordinate linea

i = 1, 2, 3 ... are not equispaced but observe a functional relationship

with the distance x from the origin. That is





It is evident that

d+d +

Let

Then

and

Hu ~ = H ~ P  i! +H.. �-P  i!! i 2 ... L�
i j i j x i-lpj x

If we define

yj+1 yj-1

we obtain similarly

Hv = H Py j! + H �-Py j!I 2 ... K � 1

The averages Cu and Cv are defined as folLows

1.486
Cui j

1.486
Cv

i,j

The above four averages are subject of course to the proviso that

all quantities H are defined where necessary.

It may be easily shown that with the above definitions of Px i!

and Py j!

V* . = � V,+V . 1 Pz i! + V. 1 .+V. 1 . 1 - Px i!

Ux . = � [ U. +U. I Py j! +  U 1+U 1 1! � � Py j!!]
subject again to the proviso that all quantities V or U required on the right

hand sides are defined.
5L

dl
P  i!

1 2

X -X
p  ! 1 il

X. 1 X.

tH . Px i! + H. 1 � � Px i!!I1/6 1/6
i,j

[H Py j! + H 1 � � Py j!II1/6 . 1/6
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Part 2
A Hydrodynamic Numerical Model of Tidal Flow Through A
Small Area of Brackish Marsh



Plate l. Aerial view of marsh study area.



A segment of Louisiana brackish marsh in the neighborhood of Air-

plane Lake was selected in October 1974 as a test case for demonstrating

the feasibility of modeling the movement of water over such a terrain.

An aerial view of the marsh is shown as Plate 1. The salient fea-

tures are a broad channel in the south~ of the picture and two tributary

channels running northward that form three open boundaries of the area

to be modeled. The northern boundary of this area  henceforward to be

known as the Model Area! is mixed in nature, being open for part of the

way from west to east and temporarily closed and open for the zest. of

its length, depending on the state of the tide.

Such a piece of marsh was selected because it has the advantages of

being nearly enclosed by open boundaries, and it is a size convenient

for surveying in a matter of hours. A mixed boundary is far more diffi-

cult to handle computationally than one that is always open. The mixed

boundary is also complicated to handle from the observational viewpoint,

for an installed tide guage will only function intermittently.

The channels shown in Plate 1 lie essentially on the margin of

Barataria Bay and about 7 km from the Gulf of Mexico.

In character the marsh consists of soft mnd covered with ~S artina

grass about 2-3 ft in height. It may or may not be left "dry" at low

water; but it is certainly flooded at high water. Thus at high water

the Nodel Area becomes a shallow lake with open boundaries all around.

Only the grass projecting above the water surface still delineates the

shape and extent of the land underneath.

For computational purposes it is necessary to superimpose a grid on

1
Compass directions are relative to the orientation of the paper

only.
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the Model Area, whose rectangular border substitutes for the real con-

figuration of the land. Figure 1 shows the grid selected, the interval

being 51.28 ft. Grid lines number from 1 to 25 in the wast-east direc-

tion, and from 1 to 13 in the south-north direction. A greater density

of grid lines than this is of course possible, but high resolution of the

Model Area was not justified in the present case, owing to the sparsity

of the topographical data.

The solid circles in Figure 1 indicate points whose elevation was

measured by theodolite relative to the Base .Point A situated in the lower

left-hand corner of the Model Area. It can be appreciated from the

scarcity of measured points that there are large areas of intervening

land ~hose elevation is a matter of guesswork. Although one can safely

predict that any inferred elevation between two widely separated datum

points will not be in error by more than 0.5 feet, owing to the near-flat

nature of the Louisiana salt marshes, yet small differences in elevation

of the order of an inch or two may be important in determining the dis-

tribution of waters over the Model Area during the period between low and

mean tide levels. However, the present study is less concerned with

predictive accuracy than with demonstrating the feasibility of a mathe-

matical technique. Consequently, the half-measured/half-guessed charac-

ter of the topographical input is not considered damaging for the present

purpose.

Rlevations were obtained for the centers of all the grid squares in

the Model Area by linear interpolation between the measured points.

These are given in Table l. For the open boundary squares  indicated by

2
Tables begin on p. 97.
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open circles in Fig. 1! it was necessary to estimate a typical depth of

the bottom of the channels below the mean water level during the period

of measurement. Here again, observational thoroughness was neglected in

the interest of convenience. A constant channel depth of 1.5 ft. was

assumed. It is now necessary to relate the measured elevations  or

essentially the Base Point! to the mean tide level on the day for which

computations are to be carried out.

Figure 2 shows the tide gauge record for 15 October 1974, obtained

at a station some hundreds of yards from the Model Area. This station is

a permanent installation; and whereas in a predictive study an in situ

tide guage would be desirable  if possible several!, in the present case

the remote reading was judged sufficient.

The curve shows two maxima and one minimum yielding two values for

the tidal range on 15 October, namely 0.63 and 0.54 feet. Likewise two

"half-period" magnitudes are obtained, which are 10.5 and 10.0 hours.

The following tidal constants were selected for the model

Amplitude = 0.3 ft.
Period = 20.0 hrs.

Thus the tide was idealized to a pure sinusoid with the above parameters.

Now, at 1000 hours on 15 October it was estimated that the land

surface at the Base Point lay approximately 0.2 ft ~ below the water sur-

face at the Base Point. Consequently, the land surface at the Base Point

should be drawn at YBP = 14.44 ft. in Figure 2. The mean tide level

 Y~! was estimated from the formula

Y YA+Y ~ Y +Y

where YA, YB, YC are the ordinates of points A, B, and C in Figure 2.

One could of course have used some other formula, such as finding the
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first moment of the figure, considered as an area, about the time axis.

But such elaboration is not necessary here.

With the above formula for Y we find that Y = 14.91 ft. Hence,

the correction to be made to the measured elevations to relate them to

mean tide level is

C YMT YBP 0 47 f 't

Let us adopt the convention that depths below the mean tide level are

positive, and "depths" above it are negative. The symbol h is used to

represent the topographical depth relative to mean tide level. Let E

stand far the topographical elevation relative to the Base Point. Then

clearly,

h = - E-C!

Equation 1 shows the manner in which the corrections are to be made.

A glance at Figure 2 reveals that the Base Point vill always be

covered by water since the tidal minimum occurs 0.18 ft. above it.

Inspection of Table 1 shows, moreover, that the whole Model Area will

always be under water since the maximum elevation relative to the Base

Point is only 0.04 ft. It appears then that a day of exceptionally high

mean tide level had been chosen to make the measurements. From the paint

of view of modeling, such a high mean tide level is not advantageous.

The decision was made therefore to reposition the mean tide level rela-

tive to the marsh. It was desired that at mean tide at least some of the

marsh should be above water The new correction increment chosen was

C = -0.2 ft.

Applying this correction to the elevations in Table 1 in the manner

of equation 1, and correcting also the open boundary depths, we derive an
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h-table  Table 2!; and from this table it is possible to derive what is

here called a "symbolic depth matrix." The latter matrix contains as

elements the numbers -1, 1, 0, and 2, each element corresponding to a

grid square. The assignment of element values proceeds on the following

basis:

-l � open boundary square
1 -- square under water, not open boundary
0 � dry square
2 -- square outside computation field

Thus if, at the start of the model we assume that the water level is

constant everywhere that water exists and equal to the mean tide level,

and that all topographical depressions below the mean tide level contain

water, then we obtain the symbolic depth matrix shown in Table 2.

Clearly, there is a wet zone in the northeast of the Nodel Area and

another smaller one in the midsouth. These starting conditions will

provide a more interesting and technically significant model history as

the tide goes through its cycles than will a direct application of the

curve in Figure l.

~a aHUi
at ax

m 0
ay

�!
av a U a v s rrrJu'.+v'

� +U � +V � � fv+g � +gat ~a.+vay 'v+ a HC2

X 8
0

av av av a g Vv'U2+V2
� +U +V � + fU+g � +g
at ax ay a y HC2
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l. Equations and Solution Method

The two-dimensional, vertically averaged equations governing a

homogeneous hydrodynamic system in which Coriolis forces and wind stresses

are present may be written  Hansen 1956; Leendertse 1967!:



where the symbols have the following meanings:

� water level above a given horizontal reference plane
 in this case mean tide level!

H � depth of water above the bottom  = h + <, where h is
as defined earlier!

U,V � vertically averaged x- and y- components respectively,
on the horizontal velocity component

f � Coriolis parameter  = 2 A sing, where 0 is the earth' s
angular velocity, and $ is the latitude. For 29'18' N,
the mean latitude of Barataria Bay, f = 0.712 X 10 4
rad/sec!

g � acceleration due to gravity
C � function used to compute the bottom stress. According

to the Chezy-Manning formula:

1.486Hl/6
C

n

where n is a constant that has the approximate value
0.026 for estuarine bottoms  Hacker, Pike, and Wilkins
1973!

8 8
� x and y components respectively of the wind or surfacex' y

stress.

Implicit in the derivation of equations 2 are the following assumptions:

1! There is negligible variation of the horizontal velocity
component from top to bottom of the fluid layer.

2! The vertical velocity component is negligible.

3! There is negligible vertical shear due to horizontal velocity
gradients.

4! There are neglibible pressure and buoyancy effects due to
small variations in the density.

Assumptions 1 and. 3 remain to be validated by computational experience

with the model, backed by observations of water level in different

places as a function of time.

Assumptions 2 and 4 are expected to be valid for well mixed estuar-

ine waters flowing over mud flats.

Equations 2 must be expressed in finite difference form for the

purpose of achieving a numerical solution. In Part 1 some numerical

experiments together with other considerations led to the choice of the



following finite difference equations as appropriate "implicit" approxi-

mations to 2:

j i
+ ! tHn Un Hn Un 1!  Hn Vn H!wtHi j i j]   ui~l j i+1 j ui j ipj/   vi j+1 ipj+1 vi j ipj

ht hx Ay

i ~

ht 2hx 2hy

m P

�a!

V+i H C � ~ pH

n+2 Vn+1! nial  n+1 Vn+1 3 + Vn+2

2Ax

'.l! � l~*',!] .
hy 2 2

Vn+1 2l /2 Hn+ Cn+ ~ " OH +
i,$ J vi,j vi,j y vi,

Vn+ � Vn+ ! + fU* + +
i j+1 isj-1J

2hy

n+2 / Vn+1 U*~1 2

2

= 0

The superscript n denotes time level t. Thus t = nd.t.

Equations 3a are similar in form to the implicit equations of

Leendertse  Leendertse and Gritton 1971!, with the exception that only

two layers in time are considered  n, n+1! instead of three  n-l, n,

n+1!. The restriction of two layers did not, in the case of a two-

dimensional test model with botto~ friction and forcing function, lead

to results that were significantly different from those obtained with a

three-layer scheme. Consequently, the two-layer scheme seemed to show a

better relationship of computer storage requirement to solution accuracy

than the other. But more important, the elimination of the lower time

level allows a more natural treatment of the moving boundary problem. A
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grid square that was dry at time level n-1  but is now wet at time level

n 1
n! poses a difficulty in that < for that square is not defined. The

grid scheme corresponding to equations 3a is shown in Figure 3.

In Leendertse's initial work �967! an Alternating Directions

Implicit-Explicit method of solution was employed. It wouM be advan-

tages however, in terms of computational effort, if the two explicit

steps could be avoided.

Part 1 showed that the phase and amplitude distortion introduced

into a tidal solution of period 12 hours by omission of the two explicit

steps, can be expected to be small if At is less than 2 minutes and also
I

less than the Friedrich/Lewy/Courant limit As/ ~2gh, for stabi1ity of
max

an explicit technique.

In the present model As  = Ax Ay! = 51.28 ft., h - 1.3 ft.,

and so

~2gh = 5.6 secs.
max

With a time step of order 5 seconds and a tidal period equal to 20

hours, it is highly likely that the difference between the solutions

obtained with a pure implicit method and a mixed implicit-explicit

method, will be negligible. Accordingly, it was decided to begin the

computations using the following strategy:

1! Solve the equation of continuity and the U-equation of motion
together implicitly along rows at time level n to yield
and Un+1 all over the wet computation field.

2! Equate Vn+1 with Vn for all wet squares.

3! Solve the equation of continuity and the V-equation of motion
together implicitly along columns at time level n+1 to yield
ran+2 and Vn+2 all over the wet computation field.

64



4! Equate U with U for all wet squares.n+1

This procedure is repeated for each succeeding pair of time steps.

Steps 2 and 4 replace the explicit steps of Leendertse's method.

In terms of the present grid scheme, the relevant "explicit" equations

are:

i~j   i+1 j i l~jJ i~j I i~j+1 i~j 1
2bx 2by

t i,j i,j ~i,j 1 ~i,j 1 gi,j *i
2 2

�b!

fU* + g
i,j

Hn+  C + ! s H~
vij vij/ y ij pH

n+2  Un+1 n+1 < V�n+2   n+1 n+1':.,  ~!�
2bxt 2bydt

fV* +
i,j g

bx

m P

i!
ii!

iii!
iv!

Open-Closed
Closed-Open
Open-Open
Closed-Closed
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Although 2 and 4 above are still explicit in form, no use is made of

the hydrodynamic equations to calculate Vn+1 and U ; consequently,

the method will be regarded as purely implicit, and the term "explicit

step" reserved for the case that the hydrodynamic equations are utilized.

For details of the implicit method itself, reference can be made to

Part 1. Here it suffices to say that two boundary conditions are re-

quired, one at each end of a row or column of the grid. The four possible

combinations are:



~i ~ J+1

Ui+1, JUiJ

Vi J

II+2 lil

 Ily2
i

 b!
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 n+2 +
i

  Il+2
i-1

Fig. 3. Grid scheme used to achieve a
solution of Equations 2.

Fig. 4.  a! Topographical ups tep and  b! topographical d~step ~



In the case of an open boundary, < is given; in the case of a closed

boundary U or V is given depending on whether the vector of unknowns

lies along a row or column respectively. When U or V is given they

have the value zero.

2. The Moving Boundary Problem

Here we come to a part of the solution technique that' assumes a

special importance for the class of problem dealt with in this study,

that is, flow over small scale, highly irregular topographical fields

whose features may become alternately wet and dry. A full discussion

of the method by which the extension of the boundary closed by the

rising water level was calculated is given in Part l. A summary of the

salient features is presented here.

The new wet boundary is determined after every successive pair of

time steps. Figure 4 a! and  b! show the two topographical situations

that can arise, referred to as the "upstep" and "downstep" situations.

Vertical grid sections in the x-z plane are shown by way of example,

In the upstep situation, water from "square" i-1 floods onto the

higher square i. In the downstep situation, the water from square i-2

first floods over an upstep i-1 and then onto a lower square i. Hence,

Figure 4 b! corresponds to a levee situation. The condition for flood-

n+2*ing in both cases is that <i , which is the computed level in square

hydraulic formula developed by engineers to calculate weir flows  cf.

Giles 1962!. It states that

W/ �!

i-1 prior to allowing any movement of the closed boundary from i to i+1,

exceeds the level of the dry land surface in square i.

The volume of water transferred in both cases is estimated from a



where Q is the volume flow per second per unit width of weir, W is the

weir height, and m is an empirical constant. In the Francis formula, of

2
which 4 is the limiting case when V /2g « W, where V is the velocity of

approach to the weir, m has the value 3.33 ft /sec; and this is the1/2

value adopted for the present study.

From averaging considerations, the volume transferred in time 2At

from square i-1 to square i was estimated in Part 1 to be

3/~
Vol = 0.26 m 6 At hy

the downstep, and hy is the dimension of a grid "square" in the y-

direction. Since the "squares" have area bx dy, the depth of water

established in square i must be

Hn+2 0.26 m A /> At
hx

To conserve mass, the volume of water transferred to a dry square

must be subtracted from the wet field. It is convenient to make this

n+2
correction to the ad!acent, transferring, wet square. Let g be the

new depth after correction, in square i-1. Then it follows that

n+2 n+2+ n+2
- 8

i-1 i-1

Now it may happen that the following condition is fulfilled:

n+2 n+2

i-1 i
�!

Clearly, this is not physically realizable. As an alternative to this

condition holding, we distribute the water between i and i-1 so that

n+2*
where b, is the excess of r. over the land surface in square i for the

n+2*upstep, or the excess of ~i 1 over the land surface in square i-1 for



In the case of the upstep, equation 7 means that

n+2 n+2
i-1

i.e., equal levels are established. In the case of the downstep, equa-

tion 7 is somewhat artificial. But choice of a suitably small value of

dt should make occurrence of the physically imaginary condition discussed

here sufficiently rare as to maintain good solution accuracy.

Very often flooding can occur from more than one direction at once.

In the context of the finite difference grid we have to consider the

possibility of flooding of dry square i from each of the squares  i-l,j!,

 i+1,j!,  i,]-1! and  i,/+I!. Thus at the same time step ht we must test

for flooding of square i from each of the four directions and apply

formula 5 in cumulative fashion if necessary. By this is meant that a

n+2'
running total Hi must be kept, composed of the sum of the individual
n+2,

H. 's contributed by the ad]acent flooding squares already considered.
1

n+2 '
Before each addition to H a test must be made, however. This

test has to do with the fact that add.itional flooding cannot occur by

formula 5 if the depth of water already established is such as to impede

n+2'
the weir flow. Define a quantity 6 . . as the amount by which the in-

i

terim level in i exceeds the land surface in the next square whose flood-

ing contribution is to be considered. Clearly, if for this square

n+2'
  

i

then we may safely apply formula 5 ~ It was decided to adopt a criterion

+2'
 8!

for calculating a successive flooding contribution. If condition 8 isn' t

met, with some choice of F , then the level in the flooded square
c

currently reached by the addition of the previous flooding contributions
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is taken as the final level. Again, suitable choice of ht for given hx

or hy should render this premature halt unlikely. But if it occurs,

then we may expect the insufficiency in the new water level  in square i!

to be gradually eliminated over the next few time steps as a result of

the successive application of the equation of continuity to the new wet

field. The same remark applies to single-square flooding where equation

7 has to be used.

The flooding procedure is applied, where necessary, in a chain

manner. It may happen that a newly flooded square is capable of flooding

the next square, and so on. There will be a cumulative error in this

chain procedure, which can only be kept small in the case of a poten-

tially long chain, by reducing the number of links. This reduction may

be affected by reducing ht, so that the volume transferred in the first

step is small.

It should be noted that when flooding of dry squares occurs from

the open boundary, it is not necessary to make any correction of volume

to the open boundary squares, for the latter represent in effect an

infinite source. Consequently, the open boundary squares in the printed

tables of < always show g- values equal to those of the imposed tide.

In the present implementation of the flooding calculations, the new

wet boundary was sought for after every successive pair of time steps.

That is, the field equations were solved for two time steps as outlined

in Section 2; then every dry square was examined for potential flooding,

and adjustments of the wet field boundary were carried out where appro-

priate; next, the field equations were solved again for the next two

time steps, and so on.

Word must be said finally about the way in which the temporarily
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closed and open segment of the model boundary was handled. Inspection of

Table 2 will show that grid squares �1,12!, �2,12!... �7,12! must be-

come alternately wet and dry as the tide evolves. When these squares

are dry they constitute a closed boundary, and when they are wet, the

boundary is of course open. It is necessary then to take cognizance of

the moment when such a boundary square as those enumerated becomes

flooded from the interior of the model, after having been dry. At that

moment it is assumed that t' he proper water level in the square concerned

is equal to the open boundary tidal level at the same instant. The g-

value is therofore ad]usted accordingly. When, however, the neighboring

tide drops so far that a boundary square becomes dry, then that square

simply vanishes from the computation field.

A dilemma arises if a boundary square becomes dry at the time level

for which its g- value is required as part of the solution along a

column. Letting n+2 be that time level, then the problem referred to

arises when at time level n+1 the boundary is open, and at time level

n+2 it is closed. Which boundary condition do we use? It is likely

that for small enough ht, either condition wi11 yield similar results in

the interior of the wet field. However, it was decided to make sure of

this by computing the model in both ways, i.e., with the boundary square

still considered as open at the final time level � albeit with a negative

depth � and with the boundary square considered to be dry during the whole

of the time step, and therefore removed from the computation field.

3. Results for the Implicit Method

Before referring to the tables of results  p. 97 ff! it is

necessary to mention an important modification of the computational

theory that was made because of the presence of round-off error.
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No flooding; square remains
dry

Hi   H = .001 ft
C

Hi 5 > H Flooding occurs

Hence, minuscule depths were ignored for the purposes of computing the

new wet boundary. The logical criteria

No flooding

FloodingH 0

were found to be computationally unworkable. The reason for this is

that the water level g must be computed immediately afterwards from

the formula

�0!Hi,j hi,j

snd if H is so small as to be essentially unrepresentable in the

fixed-point format X.XXX... where the X's are decimal digits, then t' he

results of the subtraction in equation 10 will be

and consequently when Hi is reconstituted in the main program from the

equation

i j i j i !

we will obtain

-0

an exact zero. This exact zero must certainly lead to trouble when
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After the computation of a new depth H in the subroutine that
t

computes the movement of the wet boundary due to flooding of dry squares,

the following criteria were applied:



the logarithm of H is required, as in the calculation of the Chezy-

Manning friction function C.

For consistency, a similar artificial criterion was app1ied to the

test for dry squares after solving along a row or column using the field

equations. Logically, a square i,j will become dry when

� h
i,j

However, this condition was changed to

h j+H

with H defined as in criteria 9. The use of condition ll will certainly
c

improve the readability or interpretation of the output, when, instead of

the printed result,

ri = -h

which is the consequence in a case where < actually exceeds -h by

a negligibly small amount but suffers round-off of the rightmost digits

in output, we have instead a blank or coded location, meaning that the

square is dry. In most cases computed, the selected value of H was
c

0.001 ft. The difference between a truly dry area and one covered by

less than 0.001 ft. of water is academic. The small depth of water that

may be present when a square is removed from the computation field is of

course retained in memory so as to be added back into the field when

flooding occurs.

In section 2, it was stated that the Manning coefficient n has the

approximate value 0.026 for estuarine bottoms. Since no value has been

determined for marsh grass in flat tidal regions, it was decided to
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begin with this same value of 0.026 in the present model. A working

assumption like this should. suffice to demonstrate the feasibility of

the mathematical technique, which is all that is aimed at here.

With these preliminary remarks, we may now turn to an examination

of the computations.

A number of trials of the model were made, using the solution pro-

cedure outlined on page 64, and covering a range of time steps from in

excess of 1 minute to as small as 5 seconds. Et soon became apparent

that in order to avoid spurious oscillations along rows and columns,

At had to be less than 20 seconds. In fact, solution convergence for

the implicit method was obtained at At 10 secs; for with dt 5 sec,

the few differences in g were negligible. Comparing the printed values

of U and V for the 10 and 5 second cases  which were output every 2.5

hours of tidal time! there were but rare occurrences of any differences,

and these were unimportant.

The spurious east-west oscillations of g obtained with At ~ 20 secs,

could be clearly recognized as such, for their wavelength was twice the

grid interval. Moreover, minima were so pronounced in some locations at

times between mean and high water as to be negative. Oscillations in

the north-south direction seemed generally to be of longer wavelength.

Table 4 shows selected output  the print-out was half-hourly! ob-

tained with At ~ 10 secs. There is no trace of an oscillation of <

across the wet area; for the water surface moves, when the entire Model

Area is flooded, almost as a uniformly elevated sheet. That this be-

havior should be expected can be seen from consideration of the minimum

shallow water wave velocity, ~gH i - 2.2 ft/sec, at high water over the
min

most elevated marsh point, where H 0.15 Wt. Clearly, with this minimum
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velocity a disturbance of elevation will have propagated from one open

boundary to the center of the Model Area in the north-south direction

in about 2.3 minutes; and since  a! the difference in <-elevation for a

phase difference corresponding to 2.3 minutes is only Os01 ft approxi-

mately, and  b! the wave velocity will be considerably higher over the

depressed areas of the marsh where H > H , we may expect the elevation
min'

differences involved to be less than 0.01 ft at any given time during

the flood stage and therefore unnoticeable with two decimal place

accuracy.

Returning to consideration of the effect of differing length of

time step in the pure implicit solution technique, it is evident that

At is quite critical in the region 10-20 seconds for the given grid

spacing of approximately 51 ft. In order to test the idea that At/As

is the controlling ratio in determining the presence of spurious oscil-

lations for the implicit as well as the explicit method of solution, the

case At = 20 secs was recomputed, but with the grid interval doubled.

Thus for this test case

Ax Ay 102.56 ft.

Representative results for the first 5 hours of tidal time are shown in

Table 5. Clear1y, spurious oscillations are no longer present, and the

 - values are in fact closely similar to those of Table 4. However, the

velocities in the double grid-size model are generally larger  see Figs.

5 an.d 6! .

For the present model, the F-L-C limit on At/As is given by

- 0,11 sec/ft.
2 h0 ~s
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Hence it appears that for accurate results with the Alternating Directions

Implicit method of page 64,

3.6 2.5

4 2gh ~shg max g max
bt

As

One can compare this result with the finding of Sobey �970!, who

showed analytically that Leendertse's Implicit-Explicit method will yield

accurate results for the linear equations when X/As  where X is the

wavelength of fluid motion! is as small as 50, provided At/As <

1.25/ Pgh. Hence the present criterion, relating to the pure implicit

method appears to be more restrictive, since A/As »50.

Having obtained what appears to be a satisfactory solution using the

3For a linear system of equations solved In con!unction with a
sinusoidal forcing function of period T, the wavelength is T ~gh.
Hence, with T = 20 hrs, h 1.3 ft, A ~467 x 103 ft.
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pure implicit technique, it was decided to test the accuracy of this

solution by including the exp1icit steps represented by equations �b!.

With At 10 secs, and other parameters as In Table 4, the Implicit-

Explicit method proved unstable, with spurious oscillations manifested

after 1.0 hours of tidal time.

With At 5 secs, the Implicit-Explicit method gave results virtual-

ly identical to those of Table 4 over the 10.0 hours of tidal time com-

puted, there being six differences in <, each of one unit in the second

place of decimals, In the first 4.0 hours. The g results with At 2 secs,

computed for 4.0 hours, differed in only five values  again by one unit

in the second place of decimals! from those in Table 4. Hence, the

n+1
original surmise that there would be no advantage in calculating V nd

n+2
U with explicit steps appears to have been proven.



Examination must now be made of the success of the moving boundary

procedure. Xn the following description, all computations will refer to

solutions obtained with the pure implicit technique.

We note first that the instability in the results computed with ht

20 secs renders it impossible to detect any effect, if present, of

diminishing time step upon the new boundary depths established in the

dry areas. However, we can note that there is a diminishing occurrence

of conditions of type 6, Section 3, as the time step is reduced. Thus,

in the computation with ht = 20 secs, F 0.5, Hc 0.001 ft, there
c

were 265 flood error messages of type 6 in the first 10 hours, yielding

an average of approximately 1 message per 7 time steps. With ht 10 secs,

however  and other parameters the same! there were only 7 flood error

messages in 10 hours, yielding an average of 1 message per 514 time steps.

With ht - 5 secs, the message rate was 13 in 10 hours, or an average of

approximately 1 per 554 time steps. Clearly then, even with large time

steps, the flooding computation as regards the nonoccurrence of conditions

of type 6 is physically meaningful.

One also wishes to know the frequency with which a multidirectional

flooding procedure is aborted because of the achievement of an excessive

flood depth in any initially dry square. The relevant error condition

is given by the violation of condition 8 in Section 3. Messages indi-

cating violation of condition 8 were printed out during one run of the

standard case corresponding ta Table 4. It was noticed that they became

more frequent as tidal time increased. Between 9.0 and 9.5 hours there

were 314 messages, yielding an average of approximately 2 messages per

time step. It appears then that with ht = 10 secs, multidirectional

flooding is not significantly cut off.

A word must now be said on the sub]ect of the question raised at
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end of Section 3. Two numerical cases were computed to decide whether

there was a significant difference between the results obtained with a

negative depth allowed in the open northern boundary at time level n+2

 see p 71! and the results obtained with no negative depth allowed. The

i n+2first case  with  g � -h ! has already been considered, it being
t

the standard model of Tahte 4. The second case  ti >> ! -hi >>! wasn+2

computed with the same parameters as for Table 4. No difference in q for

the two cases over the 23 hours computed was observed. It appears then

that the type of boundary condition used in row 12 is immaterial.

The decision was made to compute the remaining cases studied with no

n+2
restriction placed upon  

A further question remains concerning the best value of the param-

eter F , which determines the degree of multidirectional flooding that
c

may occur in a given square. To test the sensitivity of the model to

varying F , solutions were obtained with F 0.2 and F 1.0, other
c c c

parameters being as in Table 4. The results for the 8.5 hours and 12.0

hours computed respectively in the two cases were virtually identical to

those of Table 4 in which F 0.5. The few differences in < observed
C

were mostly of the type that either a zero was printed indicating a dry

square in the one case, where in the other a two-decimal place number

equal to -h was printed, or vice-versa. Thus condition ll had been

satisfied in the instance of a zero being printed, but not when the

q-value printed was equal to -h for the square concerned. Consequently,

the indicated difference of g must be less than 0.005 ft. From these

results it may be assumed that the choice of F is not critical.
c

Returning to a discussion of the results in Table 4 obtained with

ht 10 secs, it will be seen that <-values are only given for a little

over one tidal cycle of 20.0 hours. The second. tidal cycle yielded
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results similar to the first, with but minor differences in a few

locations during the flood stage. There is thus a rapid achievement of

cyclic equilibrium using such a short time step. Shaded areas in Table

4 indicate dry parts of the grid, or at least parts that are "dry"

within the limit of H - 0.001 ft. But where a water level has been
c

printed within a shaded square, this indicates that the level, to two-

place precision, equals -h. Consequently, in these locations the local

water depth exceeds H , but by such a small amount as to be insignifi-

cant.

With every computation of the model, there were also output at 2.5

hour intervals, the U and V components of velocity. Inspection of U and

V at 2.5 hours and 22.5 hours showed that the start-up error consequent

on setting U V 0 everywhere in the wet field at time zero  when

0!, had become essentially eliminated at 2.5 hours, since there was

good agreement between the velocity fields at both times, one tidal

cycle apart.

Current vector diagrams were plotted by the computer for the cases

of Tables 4 and 5. These are shown in Figures 5 and 6 respectively. In

both figures, velocity vectors were eliminated from squares in which a

thin film of water remained after the square had become hydrodynamically

isolated from the source. By the expression "hydrodynamically isolated"

is meant, that the water surface in a square is discontinuous with the

water surface in adjacent squares  if such surface is defined!, owing to

the land surface in the square concerned being above the water surface

in one or more adjacent squares. In this case, spurious values of the

velocity components may be generated by applying the field equations.
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Velocity components were less than O.l ft/sec.

Comparing the vector diagram for the double size grid at 2.5 hours

 Pig. 6! with that for the same time in Figure 5, shows at once that the

current magnitudes are greater for the former model.

hx �2!

H V � H V
vi j+I i,j+1 ui j

Ay

c Un+~ � Un 13 + Un+1  Un � Un-1 ! + V*
ij ij/ ij  i+1 j ilj/ ij

2ht 2hx

hx 2 2

~ n- ~ +n g /2 -n Cn

= 0

i, j+1 i, j-1

2dy

2

= 0
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4. Results Using Leendertse's Implicit Scheme

In Section 2 allustion was made to the implicit equations of

Leendertse  Leendertse and Gritton 1971!, which used three layers in

time: n-l, n, and n+1 for the solution at time level n+l. Part 1 has

shown that in a simple two-dimensional model with rectangular boundaries,

open at one side, the use of Leendertse's three-layer scheme affords a

much larger time step than is possible using the implicit-explicit two-

layer scheme already described. If the time step of a given model is

small enough compared to the tidal period so that the implicit two-layer

scheme can give accurate results, the question then exists as to whether

an implicit three-layer scheme will prove to be temporally more advan-

tageous. To answer this question in the present instance, it was decided

to recompute the results using the following finite-difference equations:



  n+2 n+13 + tP+ Un 1 Hn+1 Un+1< +
i!j i!j I   ui+1! I+1!j ui I j J

dt dx

Hn+1 Vn+2 Hn+1 Vn+2 !I V ~ ~ ~ ~ t V
vi j+1 I!j+1 vi j Itj j m 0

dy

~*'-" !
2dt 2dx 2dy

n+2 n n+2 n
fU* + I i j I j � I j 1 i j 1 g V + V

t
dy 2 2 2

U* 2+ V 2 H C = 0

It will be observed that In the above solution scheme neither U norn

n+1 nV . Is determined. In order to obtain contemporaneous components U and

V of the velocity field, the following strategy was adopted: Write
n-1 n+1

Un i,j 2 �3!

For a small enough time step, equation 13 should obviate the necessity of

determining U explicitly from the V-equation of motion.n

The use of equations 12 implies some error when a square which is

n-1now wet at. time level n was dry at time level n-1. For then < for

that square is not defined. This problem was mentioned in the discussion

of Section 2, and was one of the factors leading to the initial choice of

a two-layer solution scheme in time. Moreover, the time derivative of U

n+1 n-1centered at time level n, which involves the difference  U � U ! is

likely to be in error if for part of the interval  n-l, n+1! the square

concerned was dry.

n-1
The definition of U . for a square i,j dry at time level n-l, which

i,g

has a wet square i-l, j adjacent to it, poses no problem; we have simply
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n-1U ! 0. If however, both squares i,! and i-l, j are dry at time level

n-1n-l, the Ui is not defined, for no water exists at the position of
n-1 n-1U . The simplest recourse is to assume again that Ui = 0.

n-1In the case of deciding what to use for gi , when it is undefined,

the simplest strategy is to write

n-1 -h
i,j i,j

n+1Ui will rise from zero at F and reach some value Ui at time level n+l.

Similarly, the water level g will start at the bottom surface at time

n+1point F and rise to some value < at time level n+1. For convenience,
I

linear increases have been assumed in both cases.

 U"+ U
7 2ht

 >U / 8t!i at time level n, we will have
t

n+1
�4!
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then the depth of water in the dry square at time level n-1 will be

appropriately defined as zero.

n-1The effect of assuming U 0 as regards the calculation of BU/Bt

at time leVel n, CaII be appreciated frOm the SChematiC diagram Figure

n-1
7 a!; and the effect of assuming g -h in the calculation of Sq/3x at

at time level n can be appreciated from the schematic diagram Figure 7 b!.

 Note that the error that would be introduced into the calculation of

n-1
8</Bt at time level n if g were to be used in the derivative, is

avoided in the first of equations 12 by using t; .!
n

In both diagrams of Figure 7 the point F on the time axis denotes

the instance at which a dry square i,g begins to be flooded. The velocity



 n-i!ht

a b
Fig. 7.  a! Schematic increase of the U-component of velocity

after flooding of a dry square between time levels n-l and n+l.
 b! Schematic increase of < M the same square between time
levels n-l and n+],
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In effect then, the ideal gradient of line FB  Fig. 7[a]! will have been

replaced by the artificial gradient of line AB.
  n+1 n-1n-1  ~ +~

2
n nthe estimate of  gi .! for use in calculating  8g/Bx! at the position

~ 3

o f U, we will have

�5!

The error ia indicated as the interval 5 in Figure 7 b!,

Hopefully, the use of equations 14 and 15 in solving the first two

equations of 12 will not significantly affect the accuracy of the results.

We do not expect errors in the convective acceleration terms consequent

on setting one or more of their velocity components at time level n-1

equal to zero, to have serious effect, since these terms are expected to

be of second order.

Results were computed, using the above strategies, for time steps

At = 60, 30, 20, l0, and 2 seconds, with other parameters as in Table 4.

Comparing the g-values obtained respectively with the first three time

steps over the 23 hours of tidal time computed to those of Table 4, there

were observed to be scattered differences between the former and the

latter at corresponding times. These discrepancies never exceeded one

unit in the second place of decimals. At dt = 10 seconds, many of the

differences in < were of the type discussed in connection with the tests

of varying F ; i.e., the differing value printed is either a zero
c

 indicating negligible wat'er! or -h; hence these differences were trivial.

In the first 4.0 hours there were only nine differing values of <, the

discrepancy being one unit in the second place of decimals. At At 2

seconds, five differences from Table 4 were observed over the 4.5 hours
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computed, all of one unit in the second place of decimals. Two differ-

ences in the first 4.0 hours were observed at the same time step on com-

paring g with the results obtained using the Implicit-Explicit method

and At 2 seconds. One may surmise from these considerations that in

regard to the water levels the solution is convergent for Leendertse's

Implicit scheme at At = 2 seconds, and approximately so at At = 10

seconds. Thus, in spite of the greater stability of the Ieendertse

scheme, one must still descend to approximately the same step of 10

seconds as was found to be adequate for the earlier implicit scheme

studied, in order to obtain comparable accuracy of q.

The situation with regard to the velocity solution is not so favor-

able. The velocities obtained with the Leendertse Implicit scheme would

appear to require an even smaller step for comparable accuracy with those

obtained by the earlier implicit scheme  to be referred to hereafter as

the "Implicit scheme" without qualifier!. This fact is revealed by an

inspection of Tables 6, 7, and 8. In these tables the U and V components

of velocity calculated using the Leendertae Implicit scheme, the

Implicit scheme, and the Implicit-Explicit scheme, are given for the same

time level of 2.5 hours.

One easily notices in Table 6 that certain velocity components in

the upper left corner of the Nodel Area are large compared with those for

the same locations in Tables 7 and 8. Moreover, the values in the latter

two tables agree well, a fact inspiring confidence in their general valid-

ity. While a convergent solution for < appears to have been approximately

obtained for the Leendertse Implicit scheme at At 10 seconds, it would

appear likely that local sensitivity in the velocity determination to the

ratio As/At, renders this magnitude of At still too large for convergence
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of the velocity solution. Looking at the form of the finite difference

expressions for the time derivatives of U and V  equations 12! shows that

the relevant time step here is not At but 2At. Hence, as far as the

velocity determination is concerned, we are dealing with a time step of

20 seconds when At = 10 seconds. This is well above the Friedrich/Lewy/

Courant limit of 5.6 seconds for the model  see Sec. 2!.

In Figure 8 selected values of the U component are shown as found

by three methods, and for various time steps. Since the Implicit and

the Implicit-Explicit schemes yield identical values, to two place

accuracy, at widely differing time steps �0 seconds and 2 seconds

respectively!, these values of U will be taken as convergent. It can

then be seen that even with At 2 seconds, the Leendertse Implicit

scheme has not yielded a convergent solution for U in the locations

indicated. This is surprising, in that the relevant time step for the

acceleration terms is a mere 4 seconds, less than the F-L-C limit.

In order to demonstrate further the likelihood of the assumption

that the effect limiting the accuracy of the velocity determination is

the relative magnitude of As/At as compared with the local value of Mgh,

it was decided to recompute the double-sized grid model using the Leen-

dertse Implicit scheme. With A t 10 seconds, the latter scheme showed

seven differences of <  not exceeding one unit in the second place of

decimals! from those of the Implicit scheme  At 20 seconds! in the 5

hours computed. With d t ~ 2 seconds, the differences  again not exceed-

ing one unit in the second place of decimals! were reduced to five in the

5 hours computed. Hence the  -solution can be regarded as approximately

convergent. Figure 9, similar to Figure 8, shows that U, when At 2

seconds, while not convergent in the locations indicated, does agree
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L At 60 secs L At 30 secs

L At ~ 10 secsL At = 20 secs

I At 10 secsL At 2 secs

I-E At - 2 secs

Fig. 8. Comparison of U Results Kt/Sec, at 2.5 Hours for Different
Computational Schemes and Time Steps

L � Leendertse Implicit Scheme
I � Implicit Scheme Table 4.
I-E � Implicit-Explicit Scheme

All Parameters Zxcept ht the Same as in Table 4.
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L At 2 secsL At ~ 10 secs

I At 20 secs

Fig, 9. Comparison of U Results ft/gec, at 2.5 Hours for Two
Different Computational Schemes s

L � Leendertse Imp1icit Scheme
T. � Emplicit Scheme Table 5

All Parameters Except ht the Same as in Table 5.
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better with the Implicit solution than does U in Figure 8  determined by

I.eendertse's Implicit scheme at the same time step! agree with its accu-

rate solution. The same consideration holds when we compare the Leeder-

tse Implicit colutions for the two grids at ht 10 seconds, with their

respective Implicit solutions. Hence, lengthening the spatial step for

a given time step has improved the convergence of the velocity determin-

ation using Leendertse's Implicit scheme. The conviction must be however,

that in the case of the present model, we are safer relying on the

Implicit scheme of solution described by equations �a!.

5. Effect of Increasing the Nanning Coefficient

A final test of the model was made with a considerably larger value

of the Manning roughness coefficient n. Subsequent to beginning the

work described in this report, some values of n published by R. E.

Horton  Engineering News, 24 February and 4 Nay 1916!, were brought to

the author's attention  J. D. O' Connor, pers. comm.!. One of these values

0.070 was recommended for "sluggish river reaches, weedy." Accordingly,

the Implicit model with parameters as in Table 4, was re-run, except

that n was changed to 0.07.

Selected results for g are shown in Table 9. A general similarity

with the corresponding results in Table 4 is immediately obvious. Over

the deeper areas, < is the same; and in these squares the water level

continues to rise and fall uniformly. Some differences from Table 4

occur in the shallower squares close to the wet/dry boundary. It can be

observed that depths in the latter squares are generally shallower than

in Table 4 on the flood tide and deeper during ebb. The reason must be,

of course, that the greater bottom friction resulting from larger n

retards the incoming flow in the first case and the outgoing flaw in the

9l



second. gualitatively then, it can be seen that the model behaves as it

should.

Regarding the velocities obtained with the larger value of n, these

show a close similarity to those obtained using the smaller coefficient,

but there are some noticeable differences. In Table 10 the U and V

components of velocity computed for n 0.07 and ht = 10 seconds at 2.5

hours are given. They may be compared with the corresponding components

in Table 7 for n ~ 0.026 and ht ~ 10 seconds. Where identical values

occur, to two-place accuracy, it is evident that the possible differences

between U or V in the two tables respectively must be less than' 0.005

ft/sec. The larger values of U and V that occur over the shallower or

right-hand half of the field in Table 10 do not have a ready explanation.

To help render them accountable, the computation with n = 0.07 was re-

peated for a time step of 2 seconds and using the Implicit-Explicit

scheme of solution.

Table ll shows the results for U and V at 2.5 hours computed with

6t 2 seconds and using the Implicit-Explicit scheme. It can be seen

by comparing Tables 10 and 11 that significant changes have occurred to

certain of the velocity components in the extreme right-hand field.

These changes are such as to bring either U or V in a few locations

closer to the values obtained with n = 0.026 and b,t 10 seconds  Table

7!, or to those obtained with n = 0.026 and ht = 2 seconds, and the

Implicit-Explicit scheme  Table 8!. Since TabLes 8 and 7 show good

agreement, either may be used for comparison with Table ll.

Clearly then, it would appear that using a larger Manning coeffi-

cient decreases the accuracy of the velocity solution somewhat for a

given ht. In particular, with n 0.07 and ht = 10 seconds, the implicitly



computed velocity components have not yet converged to the correct

solution in certain shallow parts of the field.

For water levels, one may regard the Implicit solution for < when

n = 0.07 as convergent at dt = 10 seconds. Over the 4 hours computed

with ht = 2 seconds, and using the Implicit-Explicit scheme, there were

only 17 differences in t; from the corresponding results in Table 9, none

of these exceeding one unit in the second place of decimals.

6. Summary and Conclusions

The feasibility, from the mathematical standpoint, of computing the

tidal flow through a small area of marshland using the Alternating Direc-

tions Implicit technique of numerical solution combined with a special

flooding procedure based upon a hydraulic formula has been demonstrated'

The most reliable finite difference sche~e, for the minimum of computa-

tional effort, appears to be that given by equations 3a. This is a two-

layer scheme in time; and in its implementation one avoids the necessity

of determining explicitly the velocity components at every alternate

time level, by equating the unknowns U and V, to the previously deter-

mined values one time step in the past. With a time step of 10 seconds,

in con!unction with a spatial step of not less than 50 feet, this pro-

cedure appears to be adequate.

While the present model, using the above method of solution, re-

quires some 46 minutes of running time on the IBM System 360/Model 65 to

compute one 20-hour tidal cycle, the running time would be quite reason-

able on one of the newer, large machines.

In the calculations, two Manning roughness coefficients were used:

n = 0.026 and 0.07. The value was found to be not critical, since similar

results were obtained with both coefficients, especially in the deeper

areas where exact. similarity of q obtained. The smaller value had an
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advantage from the point of view of computational testing: it reduces

the bottom friction and so allows a greater current velocity over the

marsh. This in turn allows the water surface to rise uniformly every-

where not close to the dry boundary. One thus has a quick means of

estimating the accuracy of the water level solution obtained with a

given time step; for, then, deviations from uniformity introduced by

computational error are easily noticed. A more real study of course,

must at tempt to establish close limits on the value of n appropriate to

eud flats covered in ~g artina grass. This can only be done rigorously

by comparing the predictions of the model with observation.

Of necessity, the temporarily open and closed boundary in the model

was treated in isolation from the field outside the Model Area. Thus it

could only be flooded  when "dry"! from within that area. In a real-

data study, a temporarily open and closed boundary would have to be

observationally monitored by one or more tide gauges.

Provided that the hydrodynamic model can be successfully tuned in

regard to the Manning roughness coefficient, it should provide a useful

tool for the study of marsh circulation, water exchange rates, wind

effects, and even dissolved or suspended organic components � if it be

suspected that the latter may vary in horizontal apace over small areas.

For a study of water composition, there would of course be necessary an

additional equation: the diffusion-dispersion equation.

However, even without proper tuning of the Manning coefficient, one

should be able to use the present model for relative studies, an example

being to ascertain the relational effects of different boundary configura-

tions on the net volume f1ow over a given area per second. It is easy

to introduce theoretical obstructions into the Model Area � such as canal
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banks � and recompute the current field. The modified field may then be

compared with the unobstructed field, and the result of comparison used

as a basis for decision-making in t' he placement of linear obstructions

across the marsh. From the biological viewpoint one would wish to main-

tain the circulation as vigorous as possible, over as much marsh area as

possible, in order to ensure a high exchange of dissolved and suspended

nutrients.
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